Igor’s tip of the week

experience.

Usage: basic and advanced usage of IDA features

#01: Lesser-known keyboard shortcuts in IDA
#03: Selection in IDA

#04: More selection!

#05: Highlight

#09: Reanalysis

#13: String literals and custom encodings
#14: Comments in IDA

#15: Comments in structures and enums
#28: Functions list

#30: Quick views

#31: Hiding and Collapsing

#34: Dummy names

#35: Demangled names

#36: Working with list views in IDA

#37: Patching

#46: Disassembly operand representation
#47: Hints in IDA

Navigation: moving around the database
#16: Cross-references

#17: Cross-references 2

#20: Going places

#23: Graph view

#38: Hex view

#48: Searching in IDA

#49: Navigation band

#50: Execution flow arrows

Types: working with types
#10: Working with arrays
#11: Quickly creating structures
#12: Creating structures with known size
#51: Custom calling conventions
#52: Special type attributes

ablog serieson
HEX-RAYS BLOG

Seasonone

from 07/08/2020 to 13/08/2021 ﬂ>hex-mys

Today, Hex-Rays is excited to launch a special blog series where Igor, one of the experts behind IDA, will provide useful
tips and functionalities of IDA that are not always known or less obvious to its users.

The first episode of this blog series covers the most useful keyboard shortcuts that will certainly speed up your IDA

So, we hope you enjoy this first post and tune in every Friday to read Igor’s tip of the week!

Posted the 7th August 2020 by Igor Skochinsky

Hidden: hidden gems, not widely known but useful functionality

#06: IDA Release notes

#19: Function calls

#21: Calculator and expression evaluation feature in IDA
#24: Renaming registers

#39: Export Data

#41: Binary file loader

#44: Hex dump loader

Decompiler: related to the Hex-Rays decompiler

#18: Decompiler and global cross-references
#27: Fixing the stack pointer

#40: Decompiler basics

#42: Renaming and retyping in the decompiler
#43: Annotating the decompiler output

#45: Decompiler types

Automation: automating repetitive tasks

#07: IDA command-line options cheatsheet
#08: Batch mode under the hood
#32: Running scripts

Customization: customizing IDA Ul to better suit your workflow

#02: IDA Ul actions and where to find them
#22: IDA desktop layouts

#25: Disassembly options

#26: Disassembly options 2

#29: Color up your IDA

#33: IDA's user directory (IDAUSR)

CHECKALL ARTICLES : WWW.HEX-RAYS.COM/BLOG/

07 Aug 2020
& https://hex-rays.com/ blog/igor-tip-of-the-week-01-lesser-known-keyboard-shortcuts-in-ida/

This week’s tip will be about using the keyboard in IDA. Nowadays, while most actions can be carried out using the mouse, it
can still be much faster and more efficient to use the keyboard. IDA first started as a DOS program, long before GUI and
mouse became common, which is why you can still do most of the work without touching the mouse! While most of common
shortcuts can be found in the cheat sheet (HTML', PDF?), there remains some which are less obvious, but incredibly useful!

Text input dialog boxes (e.g. Enter Comment or Edit Local Type)

& Please enter text

Enter comment

1014

my comment

Ctrl+Enter Esc F1

ok || e || nep

Quick menu navigation

File Edit Jump
LI
R T

Library function |

Functions window

Function name

IVOR12Handler
IVOR15Handler

IVOR3Handler
IVORSHandler
IVOR6Handler
IVORTHandler
IVORgHandler
IVOR11Handler
IVOR13Handler

=

IVOR1Handler | 4

VOR2Handler

Search | View Debugger Lumina Options Windows

Next code At |l
Next data Ctrl+D
Next explored CirbA besciored 10 E
Next unexplored Ctrl+U EI oa. @
Immediate value... Alts|
Next immediate value Ctrl+! ROM:
T AltsT il
B Mexttext CtrlsT RoM:
Sequence of bytes... Alt+B §$
@ Next sequence of bytes Ctrl+B ROM:
Not function Ao
ROM:
Next yoid Ctrl+V RoM:
Error operand Ctrl+F N
ROM:
Al void operands ® fo:
.
All error operands ROM:
" “ rom:
] .
4 Search direction - :ﬂ

Dialog box navigation

¥ save database X

IDA will save all changes to the disk.

() Don't pack database

() Pack database (Deflate)

[collect garbage
] DONT SAVE the database

[ok || camd || mop |

You can use Ctrl-Enter to confirm (OK) or Esc to dismiss (Cancel) the dialog.
This works regardless of the button arrangement (which can differ depending on the
platform and/or theme used).

If you hold down A1t on Windows (or enable a system option), you should see under-
lines under the menu item names.

You can press the underlined letter (also known as “accelerator”) while holding down
Alt to open that menu, and then press the underlined letter of the specific menu item
to trigger it. The second step will work even if you release Alt . For example, to
execute “Search > Not function” (which has no default hotkey), you can press Alt-H,
F . Although there may be no underlines on Linux or Mac, the same key sequence
should still work. If you don’t have access to a Windows IDA and don’t want to brute-
force accelerator keys manually, you can check the cfg/idagui.cfg file which
describes IDA’s default menu layout and all assigned accelerators (prefixed with &).

In addition to OK/Cancel buttons, many of IDA's dialog boxes have checkboxes, radio
buttons or edit fields. You can use the standard Tab key to navigate between them
and Space bar to toggle, however, similarly to the menus, most dialog box controls in
IDA have accelerator shortcuts. You can use Alt on Windows to reveal them but,
unlike menus, they work even without ALt. For example. to quickly exit IDA discarding
any changes made since opening the database, use this key sequence:

Alt-X (or Alt-F4) to show the “Save database” dialog
D to toggle the “DON'T SAVE the database” checkbox
Enter or ALlt-K (or K) to confirm (OK)

NOTE: a few dialogs are excluded from this feature, for example the Options-General... dialog, also Script
Command (Shift-F2) or other dialogs with a text edit box. In such dialogs you have to hold down Alt to use
accelerators.

Thttps://hex-rays.com/wp-content/static/products/ida/idapro_cheatsheet.html
2https://hex-rays.com/wp-content/static/products/ida/support/freefiles/IDA_Pro_Shortcuts.pdf

https://hex-rays.com/blog/igor-tip-of-the-week-01-lesser-known-keyboard-shortcuts-in-ida/
https://hex-rays.com/wp-content/static/products/ida/idapro_cheatsheet.html
https://hex-rays.com/wp-content/static/products/ida/support/freefiles/IDA_Pro_Shortcuts.pdf

14 Aug 2020

& https://hex-rays.com/blog/igor-tip-of-the-week-02-ida-ui-actions-and-where-to-find-them/

In the previous post we described how to quickly invoke some of IDA's commands using the keyboard. However, sometimes
you may need to perform a specific action many times and if it doesn’t have a default hotkey assigned it can be tedious to click
through the menus. Even the accelerator keys help only so much. Or it may be difficult to discover or find a specific action in
the first place (some actions do not even have menu items). There are two IDA features that would help here:

The shortcut editor

Shoncuts.. a

Modfed by user W confictng 9 odfied & confictrg

0] Enabled only
] confictng only
Action Shorteut Ouner State
" Addstruct ns
(o Addwatch

AddressDetails

enabled (for current...
enabled (for current...

pplyPatches
skginaryText Ats

e

d (for
49 Asknextimmediate A builtin enabled (for
EEp—— e buitin enabled o

Assemble butin enabled or current.
5 sitwiseNegate B buitin enabled

Uine 120715

oo [(] S N (| [t R

The command palette

The editor is invoked via Options > Shortcuts... and allows you to see, add, and
modify shortcuts for almost all Ul actions available in IDA.

The dialog is non-modal and shows which actions are available for the current view
(currently disabled ones are struck out) so you can try clicking around IDA and see
how the set of available actions changes depending on the context.

To assign a shortcut, select the action in the list then type the key combination in the
“Shortcut:” field (on Windows you can also click the “Record” button and press the
desired shortcut), then click “Set” to save the new shortcut for this and all future IDA
sessions. Use “Restore” to restore just this action, or “Reset” to reset all actions to
the default state (as described in idagui. cfg).

Command palette (default shortcut is Ctrl-Shift-P) is similar to the Shortcut editor
in that it shows the list of all IDA actions but instead of changing shortcuts you can
simply invoke the action.

The filter box at the bottom filters the actions that contain the typed text with fuzzy
matching and is focused when the palette is opened so you can just type the approx-
imate name of an action and press Enter to invoke the best match.

https://hex-rays.com/blog/igor-tip-of-the-week-02-ida-ui-actions-and-where-to-find-them/

21Aug 2020

& https://hex-rays.com/blog/igor-tip-of-the-week-03-selection-in-ida/

This week’s post is about selecting items in IDA and what you can do with the selection.

As a small change from the previous posts with mainly keyboard usage, we'll also use the mouse this time!

Actions and what they are applied to

When an action is performed in IDA, by default it is applied only to the item under the cursor or to the current address (depending on
the action). However, sometimes you might want to perform the action on more items or to an address range, for example to:

« undefine a range of instructions;

« convert a range of undefined bytes to a string literal if IDA can’t do it automatically (e.g. string is not null-terminated);

« create a function from a range of instructions with some data in the middle (e.g. when you get the dreaded “The function has unde
fined instruction/data at the specified address” error);

« export disassembly or decompilation of only selected functions instead of the whole file;

« copy to clipboard a selected fragment of the disassembly.

Selecting in IDA

The simplest ways to select something in IDA are the same as in any text editor:

« click and drag with the mouse (you can also scroll with the wheel while keeping the left button pressed);
« hold down shift and use the cursor navigation keys (< T — | PgUp PgDn Home End etc.).

However, this can quickly become tiring if you need to select a huge block of the listing (e.g.several screenfuls). In that case, the anchor
selection will be of great use.

Using the anchor selection

1. Move to the start of the intended selection and select Edit > Begin selection (or use the Alt-L shortcut).

2. Navigate to the other end of the selection using any means (cursor keys, Jump actions, Functions window, Navigation bar etc.).

3. Perform the action (via context menu, keyboard shortcut, or global menu). It will be applied to the selection from the anchor point to
the current position.

Using the anchor selection

Some of the actions that use selection:

« Commands in the File > Produce file submenu (create .ASM, .LST, HTML or .C file)
« Edit > Export data (Shift-E)

Some more complicated actions requiring selection will be discussed in the
forthcoming posts. Stay tuned and see you next Friday!

https://hex-rays.com/blog/igor-tip-of-the-week-03-selection-in-ida/

28 Aug2020

& https://hex-rays.com/ blog/igor-tip-of-the-week-04-more-selection/

In the previous post we talked about the basic usage of selection in IDA. This week we'll describe a few more examples of
actions affected by selection.

Firmware/raw binary analysis

When disassembling a raw binary, IDA is not always able to detect code fragments and you may have to resort to trial & error for
finding the code among the whole loaded range which can be a time-consuming process. In such situation the following simple
approach may work for initial reconnaissance:

1. Go to the start of the database (Ctr1-PgUp);

2. Start selection (A1t-L);

3. Go to the end (Ctrl-PgDn). You can also go to a specific point that you think may be the end of code region (e.g. just before a big
chunk of zeroes or FF bytes);

4. Select Edit > Code or press C. You'll get a dialog asking what specific action to perform:

P Please confirm x

@ Perform analysis or force conversion of the selected bytes to instruction(s)?

fralyse || fore || concal |

5. Click “Force” if you're certain there are mostly instructions in the selected range, or “Analyze” if there may be data between instructions.
6. IDA will go through the selected range and try to convert any undefined bytes to instructions. If there is indeed valid code in the
selected area, you might see fu nctions being added to the Functions window (probably including some false positives).

Structure offsets

Another useful application of selection is applying structure offsets to multiple instructions. For example, let’s consider this function
from a UEFI module:

.text :0000000000001A64 sub_1A64 proc near ; CODE XREF: sub_15A4+EBTp
.text :0000000000001A64 5 sub_15A4+10ETp

.text :0000000000001A64

.text :0000000000001A64 var_28
.text :0000000000001A64 var_18
.text :0000000000001A64 arg_20
.text :0000000000001A64

gword ptr -28h
gword ptr -18h
gword ptr 28h

.text:0000000000001A64 push rbx
.text:0000000000001A66 sub rsp, 40h

.text :0000000000001A6A lea rax, [rsp+48h+var_18]
.text :0000000000001A6F xor rod, road

.text :0000000000001A72 mov rbx, rcx

.text :0000000000001A75 mov [rsp+48h+var_28], rax
.text:0000000000001A7A mov rax, c¢s:gBS
.text:0000000000001A81 lea edx, [r9+8]

.text :0000000000001A85 mov ecx, 20eh

.text :0000000000001A8A call gword ptr [rax+56h]
.text:0000000000001A8D mov rax, c¢s:gBS

.text :0000000000001A94 mov r8, [rsp+48h+arg_20]
.text :0000000000001A99 mov rdx, [rsp+48h+var_18]
.text :0000000000001A9E mov rcx, rbx

.text :0000000000001AA1 call gword ptr [rax+0A8h]
.text:0000000000001AA7 mov rax, c¢s:gBS

.text :0000000000001AAE mov rcx, [rsp+48h+var_18]
.text:0000000000001AB3 call gword ptr [rax+68h]
.text :0000000000001AB6 mov rax, [rsp+48h+var_18]
.text :0000000000001ABB add rsp, 40h
.text:0000000000001ABF pop rbx

.text :0000000000001ACO retn

.text :0000000000001ACO sub_1A64 endp

https://hex-rays.com/blog/igor-tip-of-the-week-04-more-selection/

28 Aug2020

& https://hex-rays.com/ blog/igor-tip-of-the-week-04-more-selection/

If we know that gBS is a pointer to EFI_BOOT_SERVICES, we can convert accesses
to it (in the call instructions) to structure offsets. It can be done for each access
manually but is tedious. In such situation the selection can be helpful. If we
select the instructions accessing the structure and press T (structure offset), a
new dialog pops up:

You can select which register is used as the base, which structure to apply and e
even select which specific instructions you want to convert.

After selecting rax and EFI_BOOT_SERVICES, we get a nice-looking listing:

.text:0000000000001A64 sub_1A64 proc near ; CODE XREF: sub_15A4+EBTp
.text:0000000000001A64 ; sub_15A4+1@ETp
.text:0000000000001A64

.text:0000000000001A64 Event = gqword ptr -28h

.text:0000000000001A64 var_18 = gqword ptr -18h

.text:0000000000001A64 Registration = gqword ptr 28h

.text:0000000000001A64

.text:0000000000001A64 push rbx

.text:0000000000001A66 sub rsp, 4eh

.text:0000000000001A6A lea rax, [rsp+48h+var_18]
.text:0000000000001A6F xor r9d, rad ; NotifyContext
.text:0000000000001A72 mov rbx, rcx

.text:0000000000001A75 mov [rsp+48h+Event], rax ; Event
.text:0000000000001A7A mov rax, cs:gBs

.text :0000000000001A81 lea edx, [r9+8] ; NotifyTpl
.text:0000000000001A85 mov ecx, 200h ; Type

.text :0000000000001A8A call [rax+EFI_BOOT_SERVICES.CreateEvent]
.text:0000000000001A8D mov rax, cs:gBs

.text :0000000000001A94 mov r8, [rsp+48h+Registration] ; Registration
.text:0000000000001A99 mov rdx, [rsp+48h+var_18] ; Event
.text:0000000000001A9E mov rcx, rbx ; Protocol
.text:0000000000001AA1 call [rax+EFI_BOOT_SERVICES.RegisterProtocolNotify]
.text:0000000000001AA7 mov rax, cs:gBs

.text:0000000000001AAE mov rcx, [rsp+48h+var_18] ; Event
.text:0000000000001AB3 call [rax+EFI_BOOT_SERVICES.SignalEvent]
.text:0000000000001AB6 mov rax, [rsp+48h+var_18]
.text:0000000000001ABB add rsp, 4eh

.text:0000000000001ABF pop rbx

.text:0000000000001ACO retn

.text:0000000000001ACO sub_1A64 endp

Forced string literals

When some code is referencing a string, IDA is usually smart enough to detect it and
convert referenced bytes to a literal item. However, in some cases the automatic
conversion does not work, for example:

« string contains non-ASCII characters
« string is not null-terminated

A common example of the former is Linux kernel which uses a special byte
sequence to mark different categories of kernel messages. For example, consider
this function from the joydev.ko module:

IDA did not automatically create a string at 1BC8 because it starts with a non-ASCII
character. However, if we select the string’s bytes and press A (Convert to string), a
string is created anyway:

https://hex-rays.com/blog/igor-tip-of-the-week-04-more-selection/

28 Aug 2020

& https://hex-rays.com/blog/igor-tip-of-the-week-04-more-selection/

Creating structures from data

This action is useful when dealing with structured data in binaries. Let’s consider a table with approximately this layout of
entries:

struct copyentry {
void *source;
void *dest;

int size;

void* copyfunc;

s

While such a structure can always be created manually in the Structures window, often it’s easier to format the data first then
create a structure which describes it. After creating the four data items, select them and from the context menu, choose
“Create struct from selection”:

IDA will create a structure representing the selected data items which can then be used to format other entries in the program
or in disassembly to better understand the code working with this data.

o+ SEUMEAS struc_3AEes <off_487F0, dword 4B8SC, OXAC, copy_funcs
o0 DATA XREF: ROM:oft_ 5310

03 oo Struc_3AE4s <byte_3AE8S, byte JAEBS, Oxe554, sub 88>
03 oo Struc_3AE4s <byte 3AESS, dword 3740C, 0x4SCH, sub_B8>

https://hex-rays.com/blog/igor-tip-of-the-week-04-more-selection/

04Sep2020
& https://nex-rays.com/blog/igor-tip-of-the-week-05-highlight/

In IDA, highlight is the dynamic coloring of a word or number under the cursor as well as all matching substrings on the screen.
In the default color scheme, a yellow background color is used for the highlight.

Highlight is updated when you click on a non-whitespace location in the listing or move the cursor with the arrow keys.
Highlight is not updated (remains the same) when:

» moving the cursor with PgUp, PgDn, Home, End,;
« scrolling the listing with mouse wheel or scroll bar;

« using Jump commands or clicking in the navigation band (unless the cursor : Q@ | o o @ -
happens to land on a word at the new location); == : :
« highlight is locked by the LockHighlight action (it is one of the handful of . Lock the current highlight |
actions which are only available as a toolbar button by default).
Register highlight
movzx eax, word ptr [rl@+rg8*2] For some processors, highlighted registers are treated in a special way: not only is
. B the same register highlighted but also any register which contains it or is a part of it.
shr ax,
and = 1 For example, on x86_x64, if ax is selected, then al, ah, eax and rax get highlighted
cmp cl, 33h ; '3’ too.
ja short loc_274BD
mov ri4, rbx
shr ri4, cl
mov row, rld
and ecx, 1
or BaN, eCx
3 CODE XREF:
lea ecx, [ra+l]
test al, al
jnz short loc_27488
cmp dl, 2Fh ; '/’
jnz short loc_2748B
cmp ecx, 3
jz short lec_27528
add rsi, 1
mov byte ptr [rdi], 2Fh ; '/’
lea eax, [ro+2]
add rdi, 1
movzx edx, byte ptr [rsi]
mov rad, ecx
mov BCx, eax
test dl, dl
Manual highlight
B 2 Quord ptr -ocon In addition to the automatic highlight by clicking on a word/number, you can also
| A 7 uord pte ogon select an arbitrary substring using mouse or keyboard and it will be used to highlight
var_co = all matching sequences on the screen. For manual highlight, only exactly matching
stack_end = quord ptr 3 substrings are highlighted — there is no special handling for the registers.
5 __unwind {
endbré4
push ris
puh ras
push ri3
push ri2
push rbp
push rbx
mov rbx, reox
sub rsp, 98h

mov [rsp+acah+IETice], rdx

mov rdx, cs:_dl_starting_up_ptr

mov [rsp+@C8htvar_B@], rdi

mov rdi, ro ; 1pfunc

mov [rsp+eCs8htvar_B4], esi
Manual highlight

You can quickly jump between highlighted matches using A1t-Up and Alt-Down. This works even if the closest match is not on screen
— IDA will look for next match in the selected direction.

Highlight is available not only in the disassembly listing but in most text-based IDA subviews: Pseudocode, Hex View, Structures and
Enums.

https://hex-rays.com/blog/igor-tip-of-the-week-05-highlight/

11Sep 2020

& https://nex-rays.com/blog/igor-tip-of-the-week-06-release-notes/

With every IDA release’, we publish detailed release notes describing various new features, improvements and bugfixes. While
some of the additions are highlighted and therefore quite visible, others are not so obvious and may require careful reading.
Having a closer look at these release notes, you will be surprised to see many small but useful features added through different
IDA versions.

A couple of good examples can be:

Text input dialog boxes (e.g. Enter Comment or Edit Local Type)

Added in IDA 7.5, these actions allow you to quickly jump between various uses of a register.

- Ul: added actions to search for register definition or register use (Shift+Alt+Up, Shift+Alt+Down)
From: What's new in IDA 7.5?

Shift-Alt-Up : find the previous location where the selected register is defined (written to).
Shift-Alt-Down : find the next location where the selected register is used (read from or partially overwritten).

These actions are especially useful in big functions compiled with high optimization level where the distance between definition and
use can be quite big so tracking registers visually using standard highlight® is not always feasible.

<
g ¢ Shiﬂ-A'*'UP* . In the above screenshot, you can see that ALt-Up jumps to the closest highlight
H Y N
xor ebx, ebx Alt-Up substring match while Shift-Alt-Up finds where rbx was changed (ebx is the low
mov [rsp+58h+arg_10], rbx <€ . .
} // starts at 4se189ee part of rbx so the xor instruction changes rbx).
loc_486189F5: ; DATA
3 try { . . .
Y wou rex, rax . These actions are currently implemented for a limited number of processors
ca cs:?AllocSysString@?$C .
nov rop, rax (x86/x64, ARM, MIPS), but may be extended to others if we get more requests.
lea rax, [rsp+58h+arg_18]
mov [rsp+58h+arg_@], rax
mov rdx, rbp
lea rcx, [rsp+S8h+arg_ 18]
call sub_4828A690
mov rsi, rax
mov [rsp+58h+var_3@], rax
} // starts at 486189F5
loc_48618A20: ; DATA
try {
mov rcx, [rsp+58h+arg_10]
test rcx, rex
jz short loc_48618A30
mov rax, [rex]

call qword ptr [rax+18h]

loc_48618A30: CODE

mov. [rsp+58h+arg_10]: x ——

Jump to previous or next function

+ ui: added shortcuts Ctrl+Shift+Up/Ctrl+Shift+Down to jump to the start of the previous/next function
From: What's new in IDA 7.2*

Added in IDA 7.2, these are minor but very useful shortcuts, especially in large binaries with many big functions.

By the way, if standard shortcuts are tricky to use, you can always set custom ones using a key combination you prefer.

Thttps://hex-rays.com/products/ida/news/

2https://hex-rays.com/products/ida/news/7_5/
3https://hex-rays.com/products/ida/news/7_2/
“https://hex-rays.com/blog/igor-tip-of-the-week-02-ida-ui-actions-and-where-to-find-them/

https://hex-rays.com/blog/igor-tip-of-the-week-06-release-notes/
https://hex-rays.com/products/ida/news/
https://hex-rays.com/products/ida/news/7_5/
https://hex-rays.com/products/ida/news/7_2/
https://hex-rays.com/blog/igor-tip-of-the-week-02-ida-ui-actions-and-where-to-find-them/

18 Sep 2020

& htips://hex-rays.com/blog/igor-tip-of-the-week-07-ida-command-line-options-cheatsheet/

Most IDA users probably run IDA as a stand-alone application and use the Ul to configure various options. However, it is possi-
ble to pass command-line options to it to automate some parts of the process. The full set of options' is quite long so we'll
cover the more common and useful ones.

@ In the examples below, ida can be replaced by ida64 for 64-bit files, or idat (idat64) for console (text-mode) UL

Simply open a file in IDA

ida <filename>

<filename> can be a new file that you want to disassemble or an existing database. This usage is basically the same as using File >
Open or dropping the file onto IDA’s icon. You still need to manually confirm the options in the Load File dialog or any other prompts
that IDA displays, but the initial splash screen is skipped.

O If you use any additional command-line options, make sure to put them before the filename or they’ll be ignored.

Open afile and auto-select a loader

ida -T<prefix> <filename>

Where <prefix> is a unique prefix of the loader description shown in the Load file dialog. For example, when loading a .NET
executable, IDA proposes the following options:

» Microsoft.Net assembly

« Portable executable for AMD64 (PE)
« MS-DOS executable (EXE)

« Binary file

For each of them, the corresponding-T option could be:

-TMicrosoft
-TPortable
-TMS
-TBinary

When the prefix contains a space, use quotes. For example, to load the first slice from a fat Mach-O file:
ida "-TFat Mach-0 File, 1" file.macho

In case of archive formats like ZIP, you can specify the archive member to load after a colon (and additional loader names
nested as needed). For example, to load the main dex file from an .apk (which is a zip file):

ida -TZIP:classes.dex:Android file.apk

However, it is usually better to pick the APK loader at the top level (especially in the case of multi-dex files)

ida -TAPK file.apk

When -T is specified, the initial load dialog is skipped and IDA proceeds directly to loading the file using the specified loader
(but any additional prompts may still be shown).

Auto-accept any prompts, informational messages or warnings

Sometimes you just want to load the file and simply accept all default settings. In such case you can use the -A switch:

ida -A <filename>

This will load the file using autonomous, or batch, mode, where IDA will not display any dialog but accept the default answer in
all cases.

https://hex-rays.com/products/ida/support/idadoc/417.shtml.html

https://hex-rays.com/blog/igor-tip-of-the-week-07-ida-command-line-options-cheatsheet/
https://hex-rays.com/products/ida/support/idadoc/417.shtml.html

18 Sep 2020

& htips://hex-rays.com/blog/igor-tip-of-the-week-07-ida-command-line-options-cheatsheet/

@ In this mode no interactive dialogs will show up after loading is finished (e.g not even “Rename” or “Add comment”). To
restore interactivity, execute batch(9)’ statement in the IDC or Python console at the bottom of IDA’'s window.

Batch disassembly

This is an extension of the previous section and is invoked using the -B switch:

ida -B <filename>

IDA will load the file using all default options, wait for the end of auto-analysis, output the disassembly to <filename>.asm and

exit after saving the database.

Binary file options

When loading raw binary files, IDA cannot use any of the metadata that is present in higher-level file formats like ELF, PE or

Mach-O. In particular, the processor type and loading address cannot be deduced from the file and have to be provided by the

user. To speed up your workflow, you can specify them on the command line:

ida -p<processor> -B<base> <filename>

<processor> is one of the processor types® supported by IDA. Some processors also support options after a colon.

<base> is the hexadecimal load base in paragraphs (16-byte quantities). In practice, it means that you should remove the last
zero from the full address.

For example, to load a big-endian MIPS firmware at linear address OxBFC0O0000:
ida -pmipsb -bBFCO000 firmware.bin
A Cortex-M3 firmware mapped at 0x4000:

ida -parm:ARMv7-M -b400 firmware.bin

Logging

When IDA is running autonomously, you may miss the messages that are usually printed in the Output window but they may
contain important informational messages, errors, or warnings. To keep a copy of the messages you can use the -L switch:

ida -B -Lida_batch.log <filename>

2https://hex-rays.com/products/ida/support/idadoc/287.shtml
3https://hex-rays.com/products/ida/support/idadoc/618.shtml

https://hex-rays.com/blog/igor-tip-of-the-week-07-ida-command-line-options-cheatsheet/
https://hex-rays.com/products/ida/support/idadoc/287.shtml
https://hex-rays.com/products/ida/support/idadoc/618.shtml

#08:

258ep2020

& https:/hex-rays.com/blog/igor-tip-of-the-week-08-batch-mode-under-the-hood/

We've briefly covered batch mode last time but the basic functionality is not always enough so let’s discuss how to customize it.

Basic usage
To recap, the batch mode can be invoked with this command line:
ida -B -Lida.log <other switches> <filename>

IDA will load the file, wait for the end of analysis, and write the full disassembly to <filename>.asm

How it works
In fact, -B is a shorthand for -A -Sanalysis.idc:

« -A: enable autonomous mode (answer all queries with the default choice).
» -Sanalysis.idc: run the script analysis.idc after loading the file.

You can find analysis.idc in the idc subdirectory of IDA install. In IDA 7.5 it looks as follows:

static main()

{

// turn on coagulation of data in the final pass of analysis
set_inf_attr(INF_AF, get_inf_attr(INF_AF) | AF_DODATA | AF_FINAL);
// .. and plan the entire address space for the final pass
auto_mark_range(©, BADADDR, AU_FINAL);

msg("Waiting for the end of the auto analysis...\n");

auto_wait();

msg("\n\n------ Creating the output file.... -------- \n");

auto file = get_idb_path()[0:-4] + ".asm";

auto fhandle = fopen(file, "w");

gen_file(OFILE_ASM, fhandle, ©, BADADDR, ©); // create the assembler
file

msg("All done, exiting...\n");

gexit(@); // exit to 0S, error code @ - success

}

Thus, to modify the behavior of the batch mode you can:

« Either modify the standard analysis.idc
« Or specify a different script using -S<myscript.idc>

For example, to output an LST file (it includes address prefixes), change the gen file' call:

gen_file(OFILE_LST, fhandle, @, BADADDR, ©);

Batch decompilation

If you have the decompiler” for the target file’s architecture, you can also run it in baich mode®. For example, to decompile the whole file:
ida -Ohexrays:outfile.c:ALL -A <filename>

To decompile only the function main:

ida -Ohexrays:outfile.c:main -A <filename>

This uses the functionality built-in into the decompiler plugin which works similarly to the analysis.idc script (wait for the end of
autoanalysis, then decompile the specified functions to outfile.c).

'https://hex-rays.com/products/ida/support/idadoc/244.shtml
2https://hex-rays.com/decompiler/
3 https://hex-rays.com/products/decompiler/manual/batch.shtml

https://hex-rays.com/blog/igor-tip-of-the-week-08-batch-mode-under-the-hood/
https://hex-rays.com/products/ida/support/idadoc/244.shtml
https://hex-rays.com/decompiler/
https://hex-rays.com/products/decompiler/manual/batch.shtml

#08:

258ep2020

& https:/hex-rays.com/blog/igor-tip-of-the-week-08-batch-mode-under-the-hood/

Customizing batch decompilation

If the default functionality is not enough, you could write a plugin to drive the decompiler via its C++ API“. However, for scripting it’s
probably more convenient to use Python. Similarly to IDC, Python scripts can be used with the -S switch to be run automatically after
the file is loaded.

A sample script is attached to this post. Use it as follows:

ida -A -Sdecompile_entry_points.py -Llogfile.txt <filename>

Speeding up batch processing

In the examples so far we've been using the ida executable which is the full GUI version of IDA. Even though the Ul is not actually
displayed in batch mode, it still has to load and initialize all the dependent Ul libraries which can take non-negligible time. This is why it
is often better to use the text-mode executable (idat) which uses lightweight text-mode Ul. However, it still needs a terminal even in
batch mode. In case you need to run it in a situation without a terminal (e.g. run it in background or from a daemon), you can use the
following approach:

1. set environment variable TVHEADLESS=1
2. redirect output

For example:
TVHEADLESS=1 idat -A -Smyscript.idc file.bin >/dev/null &

Downloads
decompile_entry_points.py®

“https://hex-rays.com/products/decompiler/sdk/
5 https://hex-rays.com/wp-content/uploads/2020/09/decompile_entry_points.py

https://hex-rays.com/blog/igor-tip-of-the-week-08-batch-mode-under-the-hood/
https://hex-rays.com/products/decompiler/sdk/
https://hex-rays.com/wp-content/uploads/2020/09/decompile_entry_points.py

020ct2020

& https://nex-rays.com/blog/igor-tip-of-the-week-09-reanalysis/

While working in IDA, sometimes you may need to reanalyze some parts of your database, for example:

« after changing a prototype of an external function (especially calling convention, number of purged bytes, or “Does not return” flag);
« after fixing up incorrectly detected ARM/Thumb or MIPS32/MIPS16 regions;

« after changing global processor options (e.g. setting $gp value in MIPS or TOC in PPC);
« other situations (analyzing switches, etc.)

Reanalyzing individual instructions

To reanalyze an instruction, position the cursor in it and press C (convert to code). Even if the instruction is already code, this action is
not a no-op: it asks the IDA kernel to:

1. delete cross-references from the current address;

2. have the processor module reanalyze the instruction; normally this should result in (re-)creation of cross-references, including the
flow cross-reference to the following instruction (unless the current instruction stops the code flow).

Reanalyzing a function

All of the function’s instructions are reanalyzed when any of the function’s parameters are changed (e.g.. in case stack variables need

to be recreated). So, the following key sequence causes the whole function to be reanalyzed: A1t-P(Edit function), Enter(confirm
dialog).

Reanalyzing a bigger range of instructions

R Pieose confirm x For this we can use the trick covered in the post on selection’.

@ Perform analysis or force conversion of the selected bytes to instruction(s)?
1. go to start of the range;

2. press (start selection);

3. go to the end of selection;

W Plesse confirm % 4. press (convert to code). Pick “Analyze” in the first prompt and “No” in the second.

aralye || Poee || cancel |

i Undefine already existing code/data?
[pon't display this message again (for this database only)

Reanalyzing whole database

X 104 optons x If you need to reanalyze everything but don't want to go through the hassle of select-
smently | ddis | Closrefeoxes | St bowss | Gah | Msc ing all the code, there is a dedicated command which can be invoked in two ways:
i }*"”“ﬁ, - :} = 1. Menu Options > General..., Analysis Tab, Reanalyze program button;

i 2.Right-click the status bar at the bottom of IDA's window, Reanalyze program
Analysis Kernel options.| [Kemel options2 | Kernel options3 |
4 Eravied [Processor spedfic analysis options |
[A ndicator enzbled
| Memory mapping |
E Reanalyze program |
[]

Cv Analysis indicator

C
— Reanalyze program
I: Processor analysis options...

AD - LT W Lok . LU0

Thttps://hex-rays.com/blog/igor-tip-of-the-week-04-more-selection/

https://hex-rays.com/blog/igor-tip-of-the-week-09-reanalysis/
https://hex-rays.com/blog/igor-tip-of-the-week-04-more-selection/

090ct2020

& https://nex-rays.com/blog/igor-tip-of-the-week-10-working-with-arrays/

Arrays are used in IDA to represent a sequence of multiple items of the same type: basic types (byte, word, dword etc.) or complex
ones (e.g. structures).

Creating an array

To create an array:

1. Create the first item;

2. Choose “Array...” from the context menu, or press * ;
3. Fill in at least the Array size field and click OK.

Step 1is optional; if no data item exists at the current location, a byte array will be created.

Hint: if you select a range before pressing *, Array size will be pre-filled with the number of items which fits into the selected range.

Quick menu navigation

Array parameters affect how the array is displayed in the listing and can be set at the W Convertto amay X
time the array is first created or any time later by pressing *.
Start address ¢ rdata:04ECD2CA
« Array size: total number of elements in the array; Fesdims ¢ sdmoECOns
« Items on a line: how many items (at most) to print on one line. 0 means to print the Aray elementsize : :
maximum number which fits into the disassembly line; e %
« Element print width: how many characters to use for each element. Together with Suggestedarraysiz=: 62
the previous parameter can be used for formatting arrays into nice-looking tables. peray sise r lements)
For example: 8 items per line, print width -1: S om0
Element print width (-1-none,0-auto)
db 1, 2, 3, 4, 5,6, 7, 8
db 9, 10, 11, 12, 13, 14, 15, 16 TITI ‘ mE=
db 17, 18, 19, 20, 21, 22, 23, 24 L i e
db 25, 255, 255, 255, 255, 255, 255, 26 E%::Zii:f R
db 27, 28, 29, 30, 31, 32, 33, 34 = o
db 35, 36, 37, 38, 39, 40, 41, 42
o][concat [[hep |

print width O:

do 1, 2, 3, 4, 5, 6, 7, 8
do 9, 10, 11, 12, 13, 14, 15, 16
db 17, 18, 19, 20, 21, 22, 23, 24
db 25,255,255,255,255,255,255, 26
db 27, 28, 29, 30, 31, 32, 33, 34
db 35, 36, 37, 38, 39, 40, 41, 42

print width 5:

db i, 2, 3, 4, 5, 6, 7, 8
db 9, 10, 11, 12, 13, 14, 15, 16
dbo 17, 18, 19, 20, 21, 22, 23, 24
db 25, 255, 255, 255, 255, 255, 255, 26
do 27, 28, 29, 30, 31, 32, 33, 34
do 35, 36, 37, 38, 39, 40, 41, 42

* Use “dup” construct: for assemblers that support it, repeated items with the same value will be collapsed into a dup expression
instead of printing each item separately;
dup off: db @FFh, OFFh, OFFh, @FFh, @FFh, OFFh
dupon:db 6 dup(@FFh)

« Signed elements: integer items will be treated as signed numbers;

* Display indexes: for each line, first item’s array index will be printed in a comment.

» Create as array: if unchecked, IDA will convert the array into separate items.

https://hex-rays.com/blog/igor-tip-of-the-week-10-working-with-arrays/

090ct2020
& https://nex-rays.com/blog/igor-tip-of-the-week-10-working-with-arrays/

Creating multiple string literals

1DA View-A

|

© |rosp: 00082¢5

<

00000225 00008225 LoAD:00008285

1DAView-A

© JC0AD: 00005263

@

1DA View-A

1DA View-A

>i|

= [r0RD: coews2es

00000357 00008357 LoAD: sstac)

The last option in array parameters dialog can be useful when dealing with multiple
string literals packed together. For example, if we have a string table like this:

First, create one string.

Then, select it and all the following strings using one of the methods described
before'.

Invoke Edit > Array... or press *. The array size will be set to the total length of the
selection. In the dialog, uncheck “Create as array”. Click OK.

We get a nicely formatted string table!

This approach works also with Unicode (UTF-16) strings.

Thttps://www.hex-rays.com/blog/igor-tip-of-the-week-04-more-selection/

https://hex-rays.com/blog/igor-tip-of-the-week-10-working-with-arrays/
https://www.hex-rays.com/blog/igor-tip-of-the-week-04-more-selection/

160ct 2020

& https://hex-rays.com/blog/igor-tip-of-the-week-11-quickly-creating-structures/

When reverse engineering a big program, you often run into information stored in structures. The standard way of doing it involves
using the Structures window and adding fields one by one, similar to the way you format data items in disassembly. But are there other

options? Let’s look at some of them.

Using already formatted data

This was mentioned briefly in the post on selection’ but is worth repeating. If you
happen to have some formatted data in your disassembly and want to group it into a
structure, just select it and choose “Create struct from selection” in the context

menu.

Using Local Types

¥ Please enter text

Please enter new type dedaration(s)

struct test

{

int x;

int y;
char buf[128];

Local Types.

Ordinal Name Size Snc Description
1 test 00000088

struct {int xint y:char buf(1281}

¥ Please confirm

x

@ This structure is not yet imported into database. Do you want te do it now?

Structures a
Struc ; (sizeof=0x88, align=xé, copyof 1) ®
s
aa »
d 128 dup(?)
o
v
15! Group nodes
Rename N
Pascal string
M=
mov rdx, [ri % Jumptooperand Enter
ftest dl, 2 E Jump in a new window Alt+Enter
iz loc 181 — P =}
F Jumpin @ new hex window
i= »
nd cdx, 5 [Usestandard symbolic constant

The Local Types view shows the high level or C level types used in the database
such as structs, enums and typedefs. It is most useful with the decompiler but can
still be used for the assembler level types such as Structures and Enums. For exam-
ple, open the Local Types (Shift-F1 or View > Open subviews > Local Types), then
press Ins (or pick Insert.. from the context menu). In the new dialog enter a C syntax
structure definition and click OK.

The structure appears in the list but cannot yet be used in disassembly.
To make it available, double-click it and answer “Yes”.

Now that a corresponding assembler level type has been created in the Structures
view, it can be used in the disassembly.

For more info about using Local Types and two kinds of types check this IDA Help
topic2.

'https://hex-rays.com/blog/igor-tip-of-the-week-03-selection-in-ida/
2 https://www.hex-rays.com/products/ida/support/idadoc/1042.shtml

https://www.hex-rays.com/blog/ig-https://16
https://www.hex-rays.com/blog/ig-https://16
https://hex-rays.com/blog/igor-tip-of-the-week-03-selection-in-ida/
https://www.hex-rays.com/products/ida/support/idadoc/1042.shtml

230ct2020

& https://nex-rays.com/blog/igor-tip-of-the-week-12-creating-structures-with-known-size/ v

Sometimes you know the structure size but not the actual layout yet. For example,
when the size of memory being allocated for the structure is fixed:

In such cases, you can quickly make a dummy structure and then modify it as you
analyze code which works with it. There are several approaches which can be used

here.

Fixed-size structure 1: single array

ATI60@BController struc ;
ATI60@eController ends|

(sizeof=bxB, mappedto 148)

W Convert to array X
Start offset © 0x0
End offset s oxt
Array elementsize : i
Maximal possible size: i
Current array size & 1
Suggested array size : 1
Aray size 0598 | tin clements)
rems an 3 ine @)
Element print width (-1none,0-auta)
Options Indexes
[4] Use "dup” construct Decimal
[signed elements Hexadedmal
[Display indexes Octal
M create as array Binary
000Centzelles:00000000
o 0 e ([e

A View-A a

id)const proc near
5 DATA XREF: _const:09000000002269840

5 this
instenceConstructed(void)

|| rocacon:

5 CO%E xiEF: ATIEGBAController: ihetaClazz: ialloc (veid) 12715

(Syncnzonized vith Hex View-l)

This is the fastest option but makes struct modification a little awkward.

1. create the struct (go to Structures view, press Ins and specify a name);
2. create the array (position cursor at the start of the struct, press * and enter the
size (decimal or hex)

When you need to create a field in the middle, press * to resize the array so it ends
before the field, create the field, then create another array after it to pad the struct to
the full size again.

Fixed-size structure 2: big gap in the middle

ATI6@@BController struc ;
db 2

ficld 8 2
ATI6@88Controller ends

(sizeof=8x1, mappedto_14@)

D Expand struct

x

looaosas db 2 ; undefined
[6BBBO58A db ? ; undefined

db 2 ; undefined
db 2 ; undefined
db ? ; undefined
db ? ; undefined
db ? ; undefined
db ? ; undefined
db ? ; undefined
db ? ; undefined
db ? ; undefined
db ? ; undefined
db ? ; undefined
db ? ; undefined

1. create the struct (go to Structures view, press Ins and specify a name);

2. create a byte field (press D);

3. add a gap (Ctrl-E or “Expand struct type..” in context menu) and enter the size
minus 1;

4. (optional but recommended) On field @ which is now at the end of the struct,

press N, Del, Enter. This will reset the name to match the actual offset and will not

hinder creation of another field_o at offset O if needed.

To create fields in the middle of the gap, go to the specific offset in the struct (G can
be used for big structs).

Fixed-size structure 3: fill with dummy fields

ATIG@@@COntroller stri

s

(sizeof=ex4, mappedto 140)

ficld @ d 2
ATI60BoController endd B COTERTOaMY *
Start offset : 0x0
End offset s oxd
Array dlement size :
Maximal possble size: 1
Currentaray size : 1
Suggested amaysize: 1
Array size Imgsm (inelements)
Tems on afine fomax)
Element print width {-1none 0-auto)
Qptions Indexes
[Use “dup” construct Decimal
[Signed elements Hexadecimal
Octal
Binary
300Cantroller :00000000
L) o= | =
20000000 ATIG@EOCONEroller struc ; (sizeof=0x598, mappedto 140)
eov00ae0 fidld ¢ dd ¥
oo0ea0a4 ficld_a dd ?
00000005 field_B dd *
2000000 field C dd ¢
20000010 field 10 dd
20000014 field_14 dd ?
00060015 field_18 dd ?
0000001C field 1C dd *
20000020 field 20 dd ¢
20000024 field_24 dd ?
00000025 field_28 dd ?
0086002C field 2C dd *

1. create the struct (go to Structures view, press Ins and specify a name);

2. create one dummy field (e.g. a dword);

3. press * and enter the size (divided by the field size if different from byte). Uncheck
“Create as array” and click OK.

https://hex-rays.com/blog/igor-tip-of-the-week-12-creating-structures-with-known-size/

230ct2020

& https://nex-rays.com/blog/igor-tip-of-the-week-12-creating-structures-with-known-size/ v

Fixed-size structure 1: single array

Using a structure with a gap in the middle (option 2 above) is especially useful when analyzing functions that work with it using a fixed
register base. For example, this function uses rbx as the base for the structure:

ATI6000Controller::initializeProjectDependentResources(void) proc near

push rbp

mov rbp, rsp

push rbx

sub rsp, 8

mov rbx, rdi

lea rax, ~vtable for'NI4@SharedController
mov rdi, rbx ; this
call gword ptr [rax+0C30h]
test eax, eax

jnz loc_25CD

mov rax, [rbx+168h]

mov [rbx+4B8h], rax

mov rax, [rbx+178h]

mov [rbx+4COh], rax

mov rax, [rbx+150h]

mov [rbx+4C8h], rax

mov [rbx+4BOh], rbx

mov rax, [rbx+448h]

mov [rbx+4DOh], rax

mov rcx, [rbx+170h]

mov [rbx+4D8h], rcx

mov rcx, [rax]

mov [rbx+4E@h], rcx

mov eax, [rax+8]

mov [rbx+4E8h], rax

call NI4@PowerPlayManager::createPowerPlayManager(void)
mov [rbx+450h], rax

test rax, rax

jnz short loc_2585

mov eax, OE00002BDh
jmp short loc_25CD

loc_2585:
mov rcx, [rax]
lea rsi, [rbx+4Beh]

To automatically create fields for all rbx-based accesses:

e - * 1. select all instructions using rbx;
e E 2. from context menu, choose “Structure offset” (or press T);
3.1in the dialog, make sure Register is set to rbx, select the created struct (a red
cross simply means that it has no fields at the matching offsets currently);
4. from the right pane’s context menu, choose “Add missing fields”.

Operand Velue

You can then repeat this for all other functions working with the structure to create
other missing fields.

MR OR AR REKRRKE
S3FETEIIEIETITEIT
H
H

o00004A7 2 undefine:
oonocico Field sz dq ? 5 XREF: ATIE0ACOREroLL
oc ATIs

https://hex-rays.com/blog/igor-tip-of-the-week-12-creating-structures-with-known-size/

300ct2020

& https://nex-rays.com/blog/igor-tip-of-the-week-13-string-literals-and-custom-encodings/

Most of IDA users probably analyze software that uses English or another Latin-based alphabet. Thus the defaults used for
string literals — the OS system encoding on Windows and UTF-8 on Linux or macOS - are usually good enough. However,
occasionally you may encounter a program which does use another language.

Unicode strings

A R e J'I_"‘“:‘ ‘:;;’;“"—””””““ > In case the program uses wide strings, it is usually enough to use the corresponding
R ’ “Unicode C-style” option when creating a string literal:
:E 51; s Currently:
db 6Bh ; k
o | e In general, Windows programs tend to use 16-bit wide strings (wchar_t is 16-bit) while
ool : e } }““’“"“"‘**“"% Linux and Mac use 32-bit ones (wchar_t is 32-bit). That said, exceptions happen
db @ Pascal style Pascal style (16 bitl 2 -=1! . . wpr . 5 .
i eon : N and you can use either one depending on a specific binary you're analyzing.
e [oy | [oebhi(sbm) |
w o int: you can use accelerators to quickly create specific strin es, for example
cavecibm Hint: y lerators to quickly create specific string types, f pl
EE : T | s Alt-A,U for Unicode 16-bits.
db 44& e ok [cacel [hep |
db &Ch : 1

Custom encodings

There may be situations when the binary being analyzed uses an encoding different from the one picked by IDA, or even multiple
mutually incompatible encodings in the same file. In that case you can set the encoding separately for individual string literals, or
globally for all new strings.

Add a new encoding
To add a custom encoding to the default list (usually UTF-8, UTF-16LE and UTF-32LE):

1. Options > String literals... (A1t-A);

2. Click the button next to “Currently:”;
3. In context menu, “Insert...” (Ins);

4. Specify the encoding name.

D String literal at 105280E00 X | o B x| | Encodings o x
UTF-8 ? Encoding name
UTF-16LE UTE-8
Currently: (no string literal) uTe-3ate o
Insert... Ins. UTF-16BE
Copy ctri+C UTE-32BE
Create: | Copyall Ctrl+Shift+Ins = = epr2s2
. . cpi2st
| C-style | Unicode C-style (16 bits)| ik
- p936
| Pascalstyle | | Pascalstyle (15bits) |
| Widepasal | | Wide pascal (16 bits) | Coc] ool [s [b
| Delphi || Dephi(isbit) |
C-style (32 bits)
Manage gefaults

For the encoding name you can use:

» Windows codepages (e.g. 866, CP932, windows-1251)

« Well-known charset names (e.g. Shift-JIS, UTF-8, Big5)

On Linux or macOS, run iconv -l to see the available encodings.

Note: some encodings are not supported on all systems so your IDB may become system-specific.

https://hex-rays.com/blog/igor-tip-of-the-week-13-string-literals-and-custom-encodings/

300ct2020

& https://nex-rays.com/blog/igor-tip-of-the-week-13-string-literals-and-custom-encodings/

Use the encoding for a specific string literal

1. Invoke Options > String literals... (A1t-A);
2. Click the button next to “Currently:”;
3. Select the encoding to use;

4. Click the specific string button (e.g. C-Style) if creating a new literal or just OK if modifying an existing one.

FD882 88C2 unk_FD882: de.b $C2 ; A
F dc.b $FB ; O
1 W String literal at FDB22 X | de.b 3EL ; &
F dec.b 365 5 2
FI Currently: 1251 dc.b $F@ ; &
I de.b $E8 ; &
F dc.b $F2 5 &
Fl dc.b 3E5 ; &
F Create: dc.b 520

FI dc.b $EF ; I
& Bascal style Pascal style (16 bits) de.b 375 5 ©
= de.b $E8 ; &
Fl | Widepased | [[Widepegeal (16bits) | | dc.b 3FE : b
Fl dc.b a

el | Delphi | P oephsks) | | de-bscr s
F de.b 3EB ; &
1 de.b $AL 5
Fll Manage defaults de.b 304 ; O
F de.b $F1 5 7
I ok || cancel || hep | de.b 502 ; O
FLL dc.b BB : =

00OFDIGE 5365 6065 6363 6967+
000FD3GE 6E6L 7220 7SGE 6120+
©000FD3E2 C2FB Elfs Fos P85+ a
©000FD332 20EE EFFS ESFE 0000
000FD391 C7EB DIAL D4FL D28B+

Set an encoding as default for all new string literals

1. Invoke Options > String literals... (A1t-A);
2. Click “Manage defaults”;

3. Click the button next to “Default 8-bit” and select the encoding to use.

W string literal at FDRAE X
Currently: |{no string literal)
Create:
| Cstle | |Unicode Cstyle (16 bits)
Pascalste		Pascalstyle (16bits)
Widepascal		Wide pageal (16 bits)
Delphi	Dephi(ssbits)	
Manage defaults

o« || cancel || rnep |

® IDA Options x

Dissssembly ~ Analysis Crossseferences Stings | Browser Graph Misc

|4 gererate names MName generation

String literal nextne char (forcesnexting) (10 | (7] Mark as autogenerated
Default string iteral type | C-style: ~ | [preserve case
Default 8-bit UTF-8) =

Serial names
Default 165t

Nember [0

wigth [0

® IDA Options X

Disassembly Analysls Crossreferences Stings Browser | Graph Misc

Name generation

el]

Siring iteral nexct ine char (forces nextine) [0 | [7] Mark as autogenerated

et sprg er e S P

] generste names

4 comment string references

Defauit -bit [Generate serial names
Defauit 1 The default encoding for string literals consisting of &-bit entities |
Tomber |0
Default 32-bit. __UTF'SE
width [0

From now on, the A shortcut will create string literals with the new default encoding, but you can still override it on a case-by-case
basis, as described above.

https://hex-rays.com/blog/igor-tip-of-the-week-13-string-literals-and-custom-encodings/

06 Nov 2020

& https:/hex-rays.com/blog/igor-tip-of-the-week-14-comments-in-ida/

The “I” in IDA stands for interactive, and one of the most common interactive actions you can perform is adding comments to
the disassembily listing (or decompiler pseudocode). There are different types of comments you can add or see in IDA.

Regular comments

These comments are placed at the end of the disassembly line, delimited by an
assembler-specific comment character (semicolon, hash, at-sign etc.). A multi-line
comment shifts the following listing lines down and is printed aligned with the first
line which is why they can also be called indented comments

Shortcut: : (colon)

Repeatable comments

Basically equivalent to regular comments with one small distinction: they are repeat-
ed in any location which refers to the original comment location. For example, if you
add a repeatable comment to a global variable, it will be printed at any place the
variable is referenced.

Shortcut: ; (semicolon)

Function comments

A repeatable comment added at the first instruction of a function is considered a
function comment. It is printed before the function header and — since it's a repeat-
able comment — at any place the function is called from. They're good for describing
what the function does in more detail than can be inferred from the function’s name.

Shortcut: ; (semicolon)

Anterior and posterior comments

These are printed before (anterior) or after (posterior) the current address as
separate lines of text, shifting all other listing lines. They are suitable for extended
explanations, ASCII art and other freestanding text. Unlike regular comments, no
assembler comment characters are added automatically.

Shortcuts: Ins, Shift-Ins (I and Shift-I on Mac)

Trivia: the comment with file details that is usually added at the beginning of the
listing is an anterior comment so you can use to edit it.

Pseudocode comments

In the decompiler pseudocode you can also add indented’ comments using the
shortcut / (slash) and block? comments using Ins (I on Mac). They are stored
separately from the disassembly comments, however function comments are shared
with those in disassembly.

‘text:10861D18 stw r28, var_10(rl)
text:10001D1C stw re, sender_Ir(r1)
text:10661D20 stw ri2, sender_cr(rl)
text: 10001024 stwu rl, sender_sp(rl)
.text:10001D28 bl .setlbcale # this is a regular comment
text:10001028 # regular comment line 2
.text:18081D28 # regular comment line 3
stw r14, ToC # this is a repeatable comment for the variable 'Toc’
repeatable comment line 2
stw r15, dword_200018A4
Iwz r17, (dword_20001158 - x26081158)(rl7)
Iwz r10, off_200010CC # _ crtov
1 s, 8
oris r9, r9, 8x403 # Ox4030008

====SUBROUTINE

====

function comment for _ threads_init
this function apparently initializes the runtime threading support
input: none

output: none
__threads_init: # CODE XREF: __ start+381,
DATA XREF: .data:off_20801094t0

.set sender_sp, -8x4B
.set saved_toc, -@x2C
.set sender 1r, &

stwu r1, sender_sp(rl) # regular comment
mflr

1wz r3, off 20001048
stw r2, @xdb+saved_toc(rl)
cmpui. crl, r3, 8

stw re, @xav+sender_1r(ri)
Inz 0, dword_206010AC
cmpwi. o, @

function comment for __threads_init
this function apparently initializes the runtime threading support
input: none
output: nene

__threads_init: # CODE XREF: __start+381p
DATA XREF: .data:off_208616940
.set sender_sp, -@x40
.set saved toc, -8x2C
.set sender_1r, 8
stwu r1, sender_sp(rl) # regular comment
wfle ro
1wz r3, off_200010A8
stw r2, exav+saved toc(rl)
cmpuwi crl, r3, 6
stw r@, Bx48+sender_1r(rl)
1wz re, dword_200918AC
cmpwi ro, @

1|// function comment
2| intes _fastcall sub 65141208(_ints4 al, unsigned int a2, _intes a3)

unsigned int ve; // erid
__int64 result; // rax

7/ block comment
// block comment line 2
unk_653F7364 = a2;

Bowuouwnsuw

J/ regular (indented) comment
/# indented comment line 2
11| if (a2)

2 {

Thttps://www.hex-rays.com/products/decompiler/manual/cmd_comments.shtml
2 https://www.hex-rays.com/products/decompiler/manual/cmd_block_cmts.shtml

https://hex-rays.com/blog/igor-tip-of-the-week-14-comments-in-ida/
https://www.hex-rays.com/products/decompiler/manual/cmd_comments.shtml
https://www.hex-rays.com/products/decompiler/manual/cmd_block_cmts.shtml

06Nov 2020

& https://hex-rays.com/blog/igor-tip-of-the-week-14-comments-in-ida/

Automatic comm

In some situations IDA itself can add comments to disassembly. A few examples:

“Auto comments” in Option > General.., Disassembly tab enables instruction comments.

ents

® IDA Options

Disassembly Analysis Cross-references
Address representation

[Eunction offsets.

[findude segment addresses|

[Use segment names

Display disassembly lines.

2] Empty fines.

[Borders between data/code (non-graph)
[Basic block boundaries (non-graph)

[source line numbers

[Try block nes.

Line prefix example: seg000:0FES
-
High suspidousness limit |0x20001294

Stings | Browser Graph | Misc
Display disassembly line parts
[Line prefixes (non-graph)
[stack pointer
4 comments:
/] Repeatable comments:

Number of opcode bytes (non-graph)
Instruction indentation {nn-graph)
Comments indentation (non-graph)

Right margin (nen-graph)

W auill

Spaces for tabuiation

TS R

Demangled names are shown as auto comments by default. Use the Options > Demangled names... dialog if you prefer to replace the

mangled symbol directly in the listing.

db 5 dup(acchy

- SUBROUTINE

| attributes: library function

l; public: virtusl void _thiscall CDocument::(CDocumentAdapter: :BeginReadChunks(void)
Poegi hunks@¢ I

@t

roc near
5 DATA XREF: .text:004173Dto

p dword ptr [ecx+5], @
3z short locret_44DDoC
mov ecx, [ecxtd]

mov eax, [ecx]

jmp dword ptr [eax+8Coh]

llocret_s4ppec:

5 CODE XREF: CDocument: :CDocumentAdapter :Beg

retn
8eginReadChunks@CDocumentadapter@CDocunentRUAEXXZ endp

String literals work similarly to repeatable comments: the string contents shows up as a comment in the place it’s referenced from.

pAtmCat - @x20800918) # "ar‘e_atm_cat"

Iwz r2, exse+saved toc(rl)
addi r3, r3e, (

1i rd, 1

bl .catopen

Inz r2, @x58+saved_t aArpAtmCat:
cmpwi. cra, r3l, 4

Iwz r5, off 28@e111C

l¢ const char aArpAtmCat[]

.string "arp.atm.cat"”

byte B

DAvewA

https://hex-rays.com/blog/igor-tip-of-the-week-14-comments-in-ida/

13Nov 2020

& https://nex-rays.com/blog/igor-tip-of-the-week-15-comments-in-structures-and-enums/

Last week we've discussed various kinds of commenis’in IDA's disassembly and pseudocode views.

In fact, the comments are also available for Structures and Enums. You can add them both for the struct/enum as a whole and
for individual members. Similar to the disassembly, regular and repeatable comments are supported.

Repeatable comments are duplicated in the listing when the enum or structure member is used.

FFFFFEFF
FFFFFEFF
FFFFFEFF
FFFFFEFF
FFFFFEFF
FFFFFFFF
FFFFFEFF
FFFFFFFF
FFFFFEFF
FFFFFEFF
FFFFFFFF
FFFFFEFF
FFFFFFFF
FFFFFEFF
FFFFFEFF
FFFFFEFF
FFFFFEFF
FFFFFEFF
FFFFFFFF
FFFFFEFF
FFFFFFFF
FFFFFEFF
FFFFFEFF
FFFFFFFF

FFFFFEFF
FFFFFFFF FILE_READ DATA = 1
FFFFFEFF FILE_LIST DIRECTORY =1

enum MACRO_FTLE, copyof 32

FFFFFFFF FILE SHARE.READ = 1

D Please enter text

Enter enum member repeatable comment

o |1 el]

; hTemplaterile

push FILE READ ATTRIBUTES ; dwFlagsAndAttributes

push &
push 3
push

push ecx 5
call esi ; Createfiles
cmp cax, ebx

; dwCreationDisposition
[:] ; lpSecurityattributes

push FILE_SHARE READ ;

push GENERIC_WRITE

Enables subscquent open operations on

5 dwDesiredAccess

1pFileName

One interesting use of this is for C++ class vtables (or any struct with pointers): if you add the comment with the method's
address in the vtable structure, it will be printed in disassembly and you can double-click it to jump to the implementation or
hover over it to see a hint window with disassembly.

lpeeoeeee C_wtbl struc ;
[peeeeoee virtod dd ?
lpeaeeeas virted dd ?
lpeceaaas C_wvtbl ends

loc_s@1106:

mov eax, [esi]

mov ecx, esi

call [eax+C_vibl.virtes]
mov eax, [esi]

mov ecx, esi

call [eaxtC_vtbl.pirted] ;
mov eax, [esi+BCh]

lea ecx, [esi+dCh]
call dword ptr [eax]
mou eax, [esi+BCh]

1ea ecx, [esi+ach]
call dword ptr [eax+4]
xor eax, eax

pop esi

retn

main endp

=> 483290

&

=>4e2280| oo - SUBROUTTI
lc__methodee proc near
mov dword ptr |
retn
c__methodea endp

Thttps://hex-rays.com/blog/igor-tip-of-the-week-14-comments-in-ida/

https://hex-rays.com/blog/igor-tip-of-the-week-15-comments-in-structures-and-enums/
https://hex-rays.com/blog/igor-tip-of-the-week-14-comments-in-ida/

Cross-references

20Nov2020

& https://hex-rays. com/blog/igor-tip-of-the-week-16-cross-references/

cross-reference, n.
A reference or direction in one place in a book or other source of information to information at another place in the same work
(from)

To help you during analysis, IDA keeps track of cross-references (or xrefs for short) between different parts of the program.
You can inspect them, navigate them or even add your own to augment the analysis and help IDA or the decompiler.

Types of cross-references
There are two groups of cross-references:

1. code cross-references indicate a relationship between two areas of code:
1. jump cross-reference indicates conditional or unconditional transfer of execution to another location.
2. call cross-reference indicates a function or procedure call with implied return to the address following the call instruction.
3. flow cross-reference indicates normal execution flow from current instruction to the next. This xref type is rarely shown
explicitly in IDA but is used extensively by the analysis engine and plugin/script writers need to be aware of it.
2. data cross-references are used for references to data, either from code or from other data items:
1. read cross-reference indicates that the data at the address is being read from.
2. write cross-reference indicates that the data at the address is being written to.
3. offset cross-reference indicates that the address the of the item is taken but not explicitly read or written.
4. structure cross-references are added when a structure is used in the disassembly or embedded into another structure.

The cross-reference types may be denoted by single-letter codes which are described in IDA's help topic “Cross reference attributes”.

Quick menu navigation

In the graph view, code cross-references are shown as edges (arrows) between
code blocks. You can navigate by following the arrows visually or double-clicking.

short loc_4693FA

short loc_4693FA

In text mode, cross-references to the current address are printed as comments at]
the end of the line. By default, maximum two references are printed; if there are more,

ellipsis (...) is shown. You can increase the amount of printed cross-references in

Options > General... Cross-references tab.

mov dword 4363%0, esi
push offset Last 5 Last

Only explicit references are shown in comments; flow cross-references are not P e T

pop ecx

displayed in text mode. However, the absence of a flow cross-reference (end of code R e

j2 short loc_4693FA

execution flow) is shown by a dashed line; usually it's seen after unconditional jumps
or returns but can also appear after calls to non-returning functions.

To navigate to the source of the cross-reference, double-click or press Enter on the forCE oc s

address in the comment. LA

Shortcuts

X is probably the most common and useful shortcut: press it to see the list of [wrefs to LOGFONTW.fHeight o x
cross-references to the identifier under cursor. Pick an item from the list to jump to Direction Ty Address Tort

i Do b_42B4 o ebp eight], eb
= po.. w sub_42B470+195 mov [ebp+ififHeight], eax

it. The shortcut works not only for disassembly addresses but also for stack
variables (in a function) as well as structure and enum members.

Line 10f2

Ctrl-Xworks similarly but shows the list of cross-references to the current address,
regardless of where the cursor is in the line. For example, it is useful when you need
to check the list of callers of the current function while being positioned on its first
instruction.

oK Cancel search Help

1 https://enwiktionary.org/wiki/cross-reference

Igor’s tip of the week - season 01

https://hex-rays.com/blog/igor-tip-of-the-week-16-cross-references/
https://en.wiktionary.org/wiki/cross-reference

20Nov 2020

& https://nex-rays.com/blog/igor-tip-of-the-week-16-cross-references/

Ctrl-3, on the other hand, shows a list of cross-references from the current
address. Having multiple cross-references from a single location to multiple others is
a somewhat rare situation but one case where it's useful is switches (table jumps):
using this shortcut on the indirect jump instructions allows you to quickly see and
jump to any of the switch cases.

If you forget the shortcuts or simply prefer using the mouse, you can find the corre-
sponding menu items in the Jump menu (and sometimes in the context menu).

3o
o dat

3
def. a2

5 3
[ecx's] ; switch jump

5 switch 39 cases
jumptable 004454AE default case, cases 1-5,9-12,27,21

Sub_44536010c 445537
sub_445360:10c 4

sub,

Sub_445360:10c 44558D
Sub_445360H0c 445543
Sub.

ptable 0044544E case 14
table 004454AE case 13
ptable 004454AE case 38
table 0044544 case 15

mov e, [ebp+var. 5} jumptable 0044544E case 17

https://hex-rays.com/blog/igor-tip-of-the-week-16-cross-references/

27Nov2020

& https://hex-rays.com/blog/igor-tip-of-the-week-17-cross-references-2/

Cross references view

The jump to xref' actions are good enough when you have a handful of cross-refer- e =
ences but what if you have hundreds or thousands? For such cases, the Cross S i
references view may be useful. You can open it using the corresponding item in the
View > Open Subviews menu. IDA will gather cross-references to the current disas-
sembly address and show them in a separate tab. It's even possible to open several o e

such views at the same time (for different addresses). om0 aomomca o

Adding cross-references

Tort

b c2876D+ 24 s 430138

g

sub_430138

X v 430138
Eup p subc2i07e aal sub_430136
I 426707456 I s 430138

[wets o s0374 o8 x

B 0o.. j sub4305C0+6 jmp sub_430374

(279,52 0o02as oosens (symems| Lne T2

In some cases you may need to add a manual cross-reference, for example to fix up an obfuscated function’s control flow graph or
add a call cross-reference from an indirect call instruction discovered by debugging. There are several ways to do it.

% Add Cross Reference >
From || V|
To |.text:00430138 |
() call Far
() call Near
() Jump Far
@l Jump Mear
() Offset
() Wirite access
() Read access
[ok | conce
mov esi, ds:GetLastError
call esi ; GetlastError
test eax, eax
jg short loc_l1@@34D7A
call esi ; GetlastError
* Enter the callee address X
Callee |Geﬂ_astError| V|
o 1 o || o |

* In the Cross references view, choose “Add cross-reference...” from the context
menu or press Ins. In the dialog, enter source and destination addresses and the xref
type.

« For indirect calls in binaries for PC (x86/x64), ARM, or MIPS processors, you can
use Edit > Plugins > Set callee address (Alt-F11).

» To add cross-references programmatically, use IDC or IDAPython functions
add_cref and add dref’, Use the XREF_USER flag together with the xref type to
ensure that your cross-reference is not deleted by IDA on reanalysis:
add_cref(@x100897E8, 0x100907C0, f1_CN|XREF_USER)

add_dref(0x100A65CC, 0x100897EQ, dr O|XREF_USER)

'https://hex-rays.com/blog/igor-tip-of-the-week-16-cross-references/

2https://hex-rays.com/products/ida/support/idadoc/313.shtml

https://hex-rays.com/blog/igor-tip-of-the-week-17-cross-references-2/
https://hex-rays.com/blog/igor-tip-of-the-week-16-cross-references/
https://hex-rays.com/products/ida/support/idadoc/313.shtml

03Dec2020
& https://hex-rays.com/blog/igors-tip-of-the-week-18-decompiler-and-global-cross-references/

Previously we've covered cross-references’ in the disassembly view but in fact you can also consult them in the decompiler

(pseudocode) view.

Local cross-references

The most common shortcut (X) works similarly to disassembly: you can use it on
labels, variables (local and global), function names, but there are some differences
and additions:

« for local variables, the list of cross-references shows pseudocode lines instead of
disassembly snippets.

« if you press X on an C statement keyword (e.g. if, while, return), all statements of
the same type in the current function will be shown

Global cross-references

If you have a well-analyzed database with custom types used by the program and
properly set up function prototypes, you can ask the decompiler to analyze all
functions and build a list of cross-references to a structure field, an enum member or
a whole local type. The default hotkey is Ctrl-Alt-X.

When you use it for the first time, the list may be empty or include only recently
decompiled functions.

To cover all functions, refresh the list from the context menu or by pressing Ctrl-u.
This will decompile all functions in the database and gather the complete list. The
decompilation results are cached so next time you use the feature it will be faster.

® Local cross referencesto v13 o X
Xref Line Columr Pseudocode line
r 64 34 sub_10012860(v8, v10, v15);
w 82 14 15 = sub_10018FAD(v27);
Line1of3
[ok]| cand | Seach | Hdp
O Local cross references to if-statements O X
Xref Line Columr Pseudocode line
o 5 0 if(a2-12=0)
Line 2 of 2

Mylod_ar &

6 this->dword0 = 1;

R Globalcrossreferences to MyLock

00000000 W sub100SB280 24 16 va->mylocks0.dwordo = sub_10013D40("(void *)vé->gapC);
Line 1 of 3. Copy ctisc.
Copyall autestittelns | s [rep |
o x

Offset Xref Function Line

s
r o sbioeFTIo s 14
r subloososs0 3 14
o sub10028000 6 19
o Djvubocument_ctr 14 19
o Djubocument_ctr 19 19
o Divubocument_ctr 21 19
o DjvubDocument_ctr 31 19
o Djvubocument_ctr 33 19

DjVuDocument_ctr 35 19

MyLock_dr E
MyLock_ctr s 6
sub_10058280 24 6
MylLock_ctr 5 6
MyLock_cr I

Mylock_dr
MyLock_dr
sub_10024180
Mylock_dr

Columr Pseudocode line
i

NyLockar(MyLock s + 5
MyLockictr(MyLock this + 2);
MyLock:ctr(MyLock *Jbyte_100841FC);
MyLock:tr(8ahis->char28);
MyLock:r(8ahis->mylocks0);
MyLock:tr(gais->mylockas);
MyLock:ctr(&his->mylockDa);
MyLock:tr(8his->mylock130)
MyLock:ctr(&ahis->mylock160);
MyLock:ctr(&ahis->mylock190);
this->dwordo = 0;
this->dwordo = 1;
Vé=>mylock0.dword0 = sub_10013D40((void *vé->apC);
this->dwords = 1;
GetCurrentThreadido;
Isection(ihis->m_csec):

p_dword24 = (nas->mylock16C.dword24;
this->dword2s = 0;

Thttps://hex-rays.com/blog/igor-tip-of-the-week-16-cross-references/

https://hex-rays.com/blog/igors-tip-of-the-week-18-decompiler-and-global-cross-references/
https://hex-rays.com/blog/igor-tip-of-the-week-16-cross-references/

10Dec 2020
& htips://hex-rays.com/blog/igor-tip-of-the-week-19-function-calls/

When dealing with big programs or huge functions, you may want to know how various functions interact, for example where
the current function is called from and what other functions it calls itself. While for the former you can use “Cross-references
to”, for the latter you have to go through all instructions of the function and look for calls to other functions. Is there a better

way?

Function calls view

This view, available via View > Open subviews > Function calls, offers a quick
overview of calls to and from the current function. It is dynamic and updates as you
navigate to different functions so it can be useful to dock it next to the listing to be
always visible. Double-click any line in the caller or called list to jump to the corre-
sponding address.

B

= < TS e

x

~*| gz short loc_1ee1c20D
“| lea esp, [esp+e]

== SUBROUTINE mmmmmmmmmmmnn

3 CODE XREF

5 CODE XREF

16n
short loc_1001C280

o001c25C 1001C25C: sub, (Synchronized v
< >

Address. Caller
1ex:10007A07 5ub_10007900 call sub_1001€290

Instruction

Address.
1ex:1001C29C call
1ex:1001C243 call

Called function
sub_10011E50
sub_10012240
1ex:1001C262 call
1ex:1001C28D call
text:1001C2C4 call
1ex:1001C2CF call
1x:1001C2DC call
1ext:1001C2E3 call
text:1001C2F2 call
tex:1001C2F0 call
1ex:1001C304 call
tex:1001C308 call

5ub_10012240
Sub_10012080
Sub_10012240
sub_10011€90
sub_10011E50
Sub_10012240
Sub_10012080
sub_10012240
sub_10011E90
sub 10012240

https://hex-rays.com/blog/igor-tip-of-the-week-19-function-calls/

17 Dec 2020

& https://hex-rays.com/blog/igors-tip-of-the-week-20-going-places/

Even if you prefer to move around IDA by clicking, the G shortcut should be the one to remember. The action behind it is called
simply “Jump to address” but it can do many more things than what can be guessed from the name.

Jump to address

First up is the actual jumping to an address: enter an address value to jump to. You
can prefix it with ex to denote hexadecimal notation but this is optional: in the
absence of a prefix, the entered string is parsed as a hexadecimal number.

In architectures with segmented architecture (e.g. 16-bit x86), a segment:offset
syntax can be used. Segment can a be symbolic name (seg@1, dseg) or hexadeci-
mal (Foer); the offset should be hexadecimal. If the current database contains both
segmented and linear (flat) addressed segments (e.g. a legacy 16-bit bootloader with
32-bit protected mode OS image in high memory), a “segment” @ can be used to
force the usage of linear address (0: 1000000).

Jump relative to current location

130421000 byte 401000

cBedalen

db 2 dup(@)

dd offset sub_481AB3

, Jump to address

Jump address | 401000

[1]

Cancel

If the entered value is prefixed with + or -, it is treated as relative offset from the cursor’s position. Once again, the ox prefix is optional:

+100 jumps 256 bytes forward and -10000 goes 64KiB(65536 bytes) backwards.

Jump relative to current location

A name (function or global variable name, or a label) in the program can be entered
to jump directly to it. Note that the raw name should be entered as it's used in the
program with any possible special symbols, for example _main for main() or
??2@YAPEAX_K@Z for operator new().

Jump to an expression

2 start

38

pPuULLLL mL

an v

proc near
short loc_s818C2

Jmp

D09 L nu b

, Jump to address

*

Jump address | start]

v

o]| e || web

A C syntax expression can be used instead of a bare address or a name. Just like in C, the hexadecimal numbers must use the 0x
prefix — otherwise decimal is assumed. Names or the special keyword here can be used (and are resolved to their address). Some

examples:
*here + 32*4: skip 32 dwords. Equivalent to +80

+ _main - @x1e:jump to a position 0x10 bytes before the function main()
« 2 + (f4-f3): multiple symbols can be used for complicated situations

Using registers

During debugging, you can use register names as variables, similarly to names in
preceding examples. For example, you can jump to EAX, RSP, ds:si(16-bit x86),
X0+0x20(ARM64) and so on. This works both in disassembly and the hex view.

‘ Jump to address

Jump address | ebp|

Cancel

https://hex-rays.com/blog/igors-tip-of-the-week-20-going-places/

08 Jan2021

& https://hex-rays.com/blog/igors-tip-of-the-week-21-calculator-and-expression-evaluation-feature-in-ida/

When reverse-engineering, sometimes you need to perform some simple calculations. While you can always use an external
calculator program, IDA has a built-in one. You can invoke it by pressing ? or via View > Calculator.

The calculator shows the result in hex, decimal, octal, binary and as a character constant. This information is also duplicated
in the Output window in case you need to copy it to somewhere else.

ey 00000000 0000 050 G050 0000 09D 5050 0090 009 GORO G 000 0500 01000010

e
o 00 o [w0 |

5 e T52o o000000000000000a0T00a0TIT0000000000000000000000000000001000010b B .. .- .

S

In addition to plain numbers, you can use names from the database, as well as register values during debugging similarly to the
“Jump to address” dialog from the previous tip'.

By the way, the number, address, or identifier under cursor is picked up automatically when you press ? so there’s no need to
copy or type it manually.

In fact, the expression evaluation feature is provided by the |DC language? interpreter built-in into IDA. You can use expressions
in almost any place in IDA that accepts numbers: Jump to address, Make array, User-defined offset and so on.

‘ Enter reference information X

OFF8 - 8-bit full offset

OFF16 - 16-bit full offset

OFF32 - 32-bit full offset

OFF64 - 64-bit full offset

LOWS -low 8 bits of 16-bit offset
LOW 16 - low 16 bits of 32-bit offset
HIGHS - high & bits of 16-bit offset
HIGH16 - high 16 bits of 32-bit offset

Base address here+4 il

[] Treat the base address as a plain number
[] offset paints past the main object

[] Use image base as offset base

[] subtract operand value

[signed operand

Targetaddress | OxFFFFFFFFFFFFFFFF v|

Target delta | 0x0 ~ |

[[oc]| concet || nep |

You can also use any of the available IDC functions®, For example, expressions like the following are possible during debugging:

get_qword(__security_cookie)”RSP

'https://www.hex-rays.com/blog/igors-tip-of-the-week-20-going-places/
2 https://www.hex-rays.com/products/ida/support/idadoc/157.shtml
3https://www.hex-rays.com/products/ida/support/idadoc/162.shtml

https://hex-rays.com/blog/igors-tip-of-the-week-21-calculator-and-expression-evaluation-feature-in-ida/
https://www.hex-rays.com/blog/igors-tip-of-the-week-20-going-places/
https://www.hex-rays.com/products/ida/support/idadoc/157.shtml
https://www.hex-rays.com/products/ida/support/idadoc/162.shtml

15Jan 2021
& https:/hex-rays.com/blog/igors-tip-of-the-week-22-ida-desktop-layouts/

IDA's default windows layout is sufficient to perform most standard analysis tasks, however it may not always be the best fit for
all situations. For example, you may prefer to open additional views or to modify existing ones depending on your monitor size,
specific tasks, or the binary being analyzed.

Rearranging windows

The standard operation is mostly intuitive - click and drag the window title to dock
the window elsewhere. While dragging, you will see the drop markers which can be
used to dock the window next to another or as a tab. You can also release the mouse
without picking any marker to make the window float independently.

B &)

Docking a floating window

DA Vieh Once a window is floating, you can’t dock it again by dragging the title. Instead, hover
the mouse just below to expose the drag handle which can be used to dock it again.

Et

IDA View-A

Reset layout

If you want to start over, use Windows > Reset desktop to go back to the default layout.

Saving and using custom layouts

The layout is saved automatically in the database, but if you want to reuse it later D Save disassembly desktop %
with a different one, use Windows > Save desktop... to save it under a custom name
and later Windows > Load desktop... to apply it in another database or session. [my layout 1 ~|
Alternatively, check the “Default” checkbox to make this layout default for all new [pefauit
databases.

[ok]| concel || Hep |
Debugger desktop

S

When debugging, the windows layout changes to add views which are useful for the
debugger (e.g. debug registers, Modules, Threads). This can lead to crowded

Sesch ew Debigser Lumina Optons Vindows iy
M S) o @O et i X/ > 0 OB @
L B ... At Al LS B

display on small monitors so rearranging them can become a frequent task.

This layout is separate from the disassembly-time one so if you want to persist a
custom debugger layout, you need to save it during the debug session.

More info: Deskiops' in the IDA Help.

¥ Save debugger desktop X
<Default debugger >
Blpechait]

[ox] cnd [b |

Thttps://hex-rays.com/products/ida/support/idadoc/1418.shtml

https://hex-rays.com/blog/igors-tip-of-the-week-22-ida-desktop-layouts/
https://hex-rays.com/products/ida/support/idadoc/1418.shtml

22 Jan2021

& https://hex-rays.com/blog/igors-tip-of-the-week-23-graph-view/

Graph view is the default disassembly representation in IDA GUI and is probably what most IDA users use every day. However,

it has some lesser-known features that can improve your workflow.

Parts of the graph

The graph consists of nodes (blocks) and edges (arrows between blocks). Each
node roughly corresponds to a basic block.

a basic block is a straight-line code sequence with no branches in except to the
entry and no branches out except at the exit.
(from Wikipedia')

Edges indicate code flow between nodes and their color changes depending on the
type of code flow:

« conditional jumps/branches have two outgoing edges: green for branch taken and
red for branch not taken (i.e. fall through to next address);

« other kind of edges are blue;

« edges which go backwards in the graph (which usually means they’re part of a loop)
are thicker in width.

Keyboard controls
W to zoom out so the whole graph fits in the visible window area;
« 1 to zoom back to 100%;
« Ctrl-Up moves to the parent node;
« Ctrl-Down moves to the child node
(if there are several candidates in either case, a selector is displayed)

Mouse controls

Besides the usual clicking around, a few less obvious mouse actions are possible:

Conditional branch taken

Conditional branch not taks
(fall-through)

:

Loop?

« double-click an edge to jump to the other side of it or hover to preview the target (source) node;

« click and drag the background to pan the whole graph in any directions;
- use the mouse wheel to scroll the graph vertically (up/down);

«» ALt+wheel to scroll horizontally (left/right);

« Ctrl+wheel to zoom in/out

Rearranging and grouping the nodes

If necessary, you can move some nodes around by dragging their titles. Edges can
also be moved by dragging their bending points. Use “Layout graph” from the context
menu to go back to the initial layout.

Big graphs can be simplified by grouping:

1. Select several nodes by holding down Ctrl and clicking the titles of multiple nodes
or by click-dragging a selection box. The selected nodes will have a different color
from others (cyan in default color scheme);

2. Select “Group nodes” from the context menu and enter the text for the new node.
IDA will replace selected nodes with the new one and rearrange the graph;

3. You can repeat the process as many times as necessary, including grouping
already-grouped nodes;

4. Created groups can be expanded again temporarily or ungrouped completely,
going back to separate nodes. Use the context menu or new icons in the group
node’s title bar for this.

Thttps://enwikipedia.org/wiki/Basic_block

https://hex-rays.com/blog/igors-tip-of-the-week-23-graph-view/
https://en.wikipedia.org/wiki/Basic_block

22Jan2021

& https://hex-rays.com/blog/igors-tip-of-the-week-23-graph-view/

dword ptr -4
dword ptr 8
dword ptr och

push cbp

mov ebp, esp

sub sp,

mov [ebpvar_8], &

mov [ebptvar_4], @

eax, [ebpt
add eax, [ebp+
mov [ebptvar_s;
mov ecx, [ebpt:
add ecx, 1

mov [ebptarg_o;
mov [ebptvar C
jmp short loc_i
w

Loop:

[
Loc_se1216:

mow eax, [ebp+var_s]
add eax, [ebptvar 4]
mov esp, ebp

[SmRcR=T ok

Unhide grouf Collepse several nodes into 2 group nade
Ungroup nodes

Hide all groups

Unhide all groups

Layout graph

Print graph

Fit window w
Zoom 100% 1
Text view

Set node color

Use predefined color |

Use predefined color 2

Set node color to default

Select nodes of this color
Synchronize with 3
Lumina »
Eont...

Debug 3

; Attributes: bp-based frame

; int _cdecl sub_461180(unsigned int, unsigned int)

sub_201180 proc near

lvar_c= dword ptr -ach

arg_4= dword ptr oCh

push
Imov.
sub

ebp.

[ebpvar 3], ©
[ebptvar_4], o

cax, [ebptvar_3]
add eax, [ebpvar 4]
Imov esp, ebp

<bp

sub_461180 endp

More info: Graph view in IDA Help? (also available via F1 in IDA).

2https://www.hex-rays.com/products/ida/support/idadoc/42.shtml

https://hex-rays.com/blog/igors-tip-of-the-week-23-graph-view/
https://www.hex-rays.com/products/ida/support/idadoc/42.shtml

29Jan2021
& https://nex-rays.com/blog/igors-tip-of-the-week-24-renaming-registers/

While register highlighting can help tracking how a register is used in the code, some-
times it's not quite sufficient, especially if multiple registers are used by a complicat-
ed piece of code. In such situation you can try register renaming.

To rename a register:

« place the cursor on it and press N or Enter, or
« double-click it

A dialog appears where you can specify:

* new name to be used in the disassembly;
- comment to be shown at the place of the new name’s definition;
« range of addresses where to use the name.

The address range defaults to the current function boundaries but you can either
edit them manually or select a range before renaming (this can be tricky since the
cursor needs to be on the register). The new range cannot cross function boundaries
(registers can be renamed only inside a function). The new name and the comment
are printed at the start of the specified range.

Even if you don't rename registers yourself, you may encounter them in your
databases. For example, the DWARF plugin can use the information available in the
DWARF debug info to rename and comment registers used for storing local variables
or function arguments.

To undo renaming and revert back to the canonical register name, rename it to an
empty string.

See also: Rename register’ in the IDA Help.

3 Attributes: bp-based frame

_wmain proc near

arg_e= dword ptr &

push ebp
mov ebp, esp
M Rename register X
Comment | stack frame pointer| v
[oc][ol || reb
retn

_wmain endp

; Attributes: bp-based frame
_wmain proc near
arg_@= dword ptr &
frame_ptr = ebp

push frame_ptr
mov 'Fi'me_ptr, esp

3 stack frame pointer

cmp [frame_ptr+arg_@], 29Ah
jnz short loc_4@12C1
| I
]

call sub_4@1230

mov eax, dword_483374
pop frame_ptr
retn

_wmain endp

; void vman5_elAddDriverClass(t_DeviceType driver,

EXPORT vmanS_glAddDriverClass
wmans_eladdbriverclass

fp_init= -8x20
fp_readpartitiontable = @
fp_writepartitiontable 8= 4
fp_getdevicecharateristics_@= 8

driver = R@
fp_init_@ = R1
fp_registervolume = R2 ; t_VMAL RegisterVolume
fp_unregistervolume = R3; t VMAL UnregisterVolume
PUSH {driver-R7,LR}

HOVS R, fp_unregistervolume
fp_unregistervolume = R1; t_VMAL_UnregisterVolume

; t_DeviceType
5 t_VMAL_InitDriver

t_VMAL_TnitDriv

fp_readpartitiontable = R4; t_VMAL_ReadPartitionTable
fp_writepartitiontable = RS; t_WMAL_WritePartitionTable
fp_getdevicecharateristics = R6; t VMAL GetDeviceCharacteristics

MOVS R3, #8x1C

ADD fp_readpartitiontable, SP, #6x24+fp readpartitiont
MULS R3, driver

LDR R7, =drv_classes

oM fp_readpartitiontable, {fp_readpartitiontable-fp_g
STRB driver, [R7,R3]

LDR RO, [SP,#8x24+fp_init]

ADDS R3, R3, R7

STR RO, [R3,#4]

HOVS RO, R3

ADDS RO, #BxC

STH R@!, {fp_unregistervolume,fp_readpartitiontable-ff
STR fp_registervelume, [R3,#8]

POP {R@-R7,PC}
; End of function vman5_@1AddDriverClass

Thttps://www.hex-rays.com/products/ida/support/idadoc/1346.shtml

https://hex-rays.com/blog/igors-tip-of-the-week-24-renaming-registers/
https://www.hex-rays.com/products/ida/support/idadoc/1346.shtml

05Feb2021

& https://hex-rays.com/blog/igors-tip-of-the-week-25-disassembly-options/

By default IDA's disassembly listing shows the most essential information: disassembled instructions with operands,
comments, labels. However, the layout of this information can be tuned, as well as additional information added. This can be
done via the Disassembly Options tab available via Options > General... menu (or Al1t-0, G).

Text and Graph views options

If you open the options dialog in graph mode, you should have something like the
following:

And if you do it in text mode (use Space to switch), it will be different:

As you may notice, some options are annotated with (graph) or (non-graph), denoting
the fact that IDA keeps two sets of options for different modes of disassembly. To
make the graphs look nicer, the defaults are tuned so that the nodes are relatively
narrow, while the text mode can use the full width of the window and is spaced out
more. However, you can still tweak the options of either mode to your preference and
even save them as a named or default deskiop layout’.

Line prefixes

One example of a setting which is different in text and graph modes is “Line prefixes”
(enabled in text mode, disabled in graph mode). Prefix is the initial part of the disas-
sembly line which indicates its address (e.g. . text:00416280). For example, you can
enable it in the graph too or disable display of the segment name to save space.

Or you can show offsets from start of the function instead of full addresses:

This can be convenient because you always know which function you're currently
analyzing.

® D4 Options.

{ Dissssembly | Analysis Cross-eferences
Address representation
[Eunction offsets
[Include segment addresses

[Use segment names

Display disassembly lines

[Empty lines

[Borders between datajcods (araph)
[] Basic block boundaries (graph)

[seurce line numbers

[Try blocklines

Line prefix example:

Stings Bromser Graph | Misc
Display disassembly ne parts
[Line prefixes graph)
[Stack pointer
[Comments
[Repeatable comments
[Auto comments
Number of opcoge bytes (graph) b

Instruction indentation (graph)]

Comments indentation {graph)
Right margin (graph)
Spaces for tabulation

MW D4 Options

{ Dissssembly | Analysis Crossreferences
Address representation
] Function offsets.
[Incude segment addresses

5 se segmentnames

Display disassembly nes

4 Empty lines

[Borders between datajcode (non-graph)
[gasic block boundaries {non-graph)

[source line numbers

B Try block lines:

Line prefix example: seg000:0FE4

Stings Bronser | Graph Misc
Display disassembly ine parts
[Line prefixes (non-graph)
] Stack pointer
] comments
] Repeatable comments
[Awto comments

Number of opeade bytes (nen-graph)

Instruction indentation (non-graph)
Comments indentation (non-graph)
Right margin {non-graph)

Spaces for tabulation

Hich suspicousness it

o 0 ol || kb |

0041625 nov

] Borders betueen catafcode (g

1 sub_sorser Des
[foco:ooz1c2ad oo short 10c_s1sann =
o Coamentz ndentatn r3ph)
AT blckines
Rehtmargn reoh)
[pres | Spaces for tbulation
|sub_416280+2C _mov___eax, [ebpsstr] L
X 04 Option:

s Crossreferences | Stngs | Browser Graph Msc

Number of pcoge bytes (araph)

'https://www.hex-rays.com/blog/igors-tip-of-the-week-22-ida-desktop-layouts/

https://hex-rays.com/blog/igors-tip-of-the-week-25-disassembly-options/
https://www.hex-rays.com/blog/igors-tip-of-the-week-22-ida-desktop-layouts/

12Feb2021

& https://hex-rays.com/blog/igors-tip-of-the-week-26-disassembly-options-2/

Continuing from last week® let's discuss other disassembly options you may S 104 Options
want to change. Here’s the options page again: (Bt | arass | Croseesfeenes Smgs | oowser Gaph | Mac
Address representation Display disassembly line parts
[Eunction offsets [A Line prefixes (non-graph)
[Indlude segment addresses [stack painter
[Use segment names A comments
Display disassembly nes 4 gepeatable comments
A Enaty nes [Auto comments
[Barders between data/code (non-graph) umber of opcoge bytes (non graph) D
[Basic block boundaries (non-graph) Instruction indentation (non-graph)
D) sase e Compents néetoten (e
[Try block lines ahtmaren Gomaraph) E
Line prefix example: segd00:0FE4 Spaces for tabuation
Lon susicusness it
High suspicousness it
o]

Disassembly line parts

This group is for options which control the content of the main line itself. Here is an Display disassembly line parts

example of a line with all options enabled:

ck poi 2
The marked up parts are: [] Stack pointer

E Comments
1. The line prefix (address of the line). [1 Repeatable comments
2. The stack pointer value or delta (relative to the value at the entry point). Enabling [Auto comments 4

this can be useful when debugging problems like “sp-analysis failed”, “positive sp v
value has been detected”, or “call analysis failed”.

3. Opcode bytes. The number entered in the “Number of opcode bytes” specifies the
number displayed on a single line at most. If the instruction is longer, the rest is
printed on the second line. If you prefer to truncate the extra bytes, enter a negative
number (e.g. -4 will display 4 bytes at most, the rest will be truncated).

4. Comments for instructions with a short description of what the instruction is doing
(may not be available for all processors or all instructions).

Display disassembly lines

This group of options control display of lines other than the actual line of the disas- Display disassembly lines
sembly for a given address (main line). !
[+] Empty lines 1

1. Empty lines: this prints additional empty lines to make disassembly more readable, [] Borders between data/code (non-graph) 2
especially in text mode (e.g. between functions or before labels). Turn it off to fit] Basic block boundaries {non-graph) 3
more code on screen. _

2. Borders between data/code: displays the border line (;------------) whenever B4 sgurce fine numbers 4
there is a stop in the execution flow (e.g. after an unconditional jump or a call to a B4 Try block lines 5

non-returning function).
3. Basic block boundaries: adds one more empty line at the end of each basic block
(i.e. after a call or a branch).

-al550C/calf-0.0

[~] Line prefixes (non-graph) 1

o
S35, 1S (dord_5005719844)
212 #8415 (dvord_0005F19845)

00000650 1
0000080 loc ¢
00000680 effect_name =
oo00sEe

4. Source line numbers: displays source file name and line number if this information
is available in the database (e.g. imported from the DWARF debug information).
5. Try block lines: enables or disables display of information about exception

WA ko, =oxa08
00006+ 3 B 2w
oo000sEs
oo000sEs MoV effect_nane, RO
-0000058C ; 5 try {

oC 3} /7 stares ot 68C
ooco0seC
0000060 3 5 loc_308
oooopsco >

handling recovered by parsing the exception handling metadata in the binary.

<
<
-
¢
¢
<
Lt
-t
<
.
t
b
+
<
<
.

text:000006C4 ;5 cleanup() // owned by 643
2| text 00000604 3 o lecscc
text 0000064

Mumber of opcode bytes (non-graph) 3 D

ooaoosec 3 B anzcalf_plugins22saturator_sudio_noduleCiEy ; calf plugins: :sat
oeoaost r

Thttps://www.hex-rays.com/blog/igors-tip-of-the-week-25-disassembly-options/

https://hex-rays.com/blog/igors-tip-of-the-week-26-disassembly-options-2/
https://www.hex-rays.com/blog/igors-tip-of-the-week-25-disassembly-options/

19Feb 2021

& https://nex-rays.com/blog/igors-tip-of-the-week-27-fixing-the-stack-pointer/

As explained in Simplex method in IDA Pro’, having correct stack change information is essential for correct analysis. This is
especially important for good and correct decompilation. While IDA tries its best to give good and correct results (and we've
made even more improvements since 2006), sometimes it can still fail (often due to wrong or conflicting information). In this

post we'll show you how to detect and fix problems such as:

“sp-analysis failed”

L =

loc_4@6FAS:
leaC mov ebx, offset dword 41E88C
@6 push ebx
216 call _Init_thread_header
610 pop cox
|88C cmp dword_41E80C, BFFFFFFFFh
leec jnz short loc_seeren

%I—

ecx, offset dword 410180
_Traceloggi ist 5 TraceloggingRegister(x)
offset Tracelogger_ GetInstance_ 2 dynamic_atexit_destructor,
_atexi

=

__Init_thread_footer

—

W=

loc_406F9D:
06C push edi
010 push esi
014 call ?LogSearchBing@Tracelogg i i ; Tracelo
o6C pop edi
068 pop esi

oe4 pop ebx
060 retn

Both examples are from the 32-bit build of notepad.exe from Windows 10 (version 10.017763.475) with PDB symbols from

Microsoft’s public symbol server applied.

Note: in many cases the decompiler will try to recover and still produce reasonable decompilation but if you need to be 100%

Detecting the source of the problem

The first steps to resolve them are usually:

“positive sp value has been detected”

IDA View-A [x] Pseudocode-A

HRESULT _ userpurge StringCchCopyh@i<eax>(

unsigned int alfi<edx>,
wehar_t *adficecxs,

size t cchDest,

unsigned int aa,

const unsigned __int16 *as)

HRESULT result; // eax
const wchar_t *v6; // [esp-8h] [ebp-8h]
size_t v7; 7/ [esp-h] [ebp-4h]

result = 8;

if (tal || al > @xFFFFRFFF)
result = -2147024809;

if (result >= 8)

return StringCopyWorkerW(a2, cchbest, (size t *)a2, vé, v7);

if (a1)
*a2 = 8;
return result;

1. Switch to the disassembly view (if you were in the decompiler);

2. Enable “Stack pointer” under “Disassembly, Disassembly line parts” in Options >

General..;

3. Look for unusual or unexpected changes in the SP value (actually it’s the SP delta
value) now added before each instruction.

To detect “unusual changes” we first need to know what is “usual’. Here are some

examples:

« push instructions should increase the SP delta by the number of pushed bytes (e.g.

push eax by 4 and push rbp by 8)

« conversely, pop instructions decrease it by the same amount

« call instructions usually either decrease SP to account for the pushed arguments
(__stdcallor _ thiscall functions on x86), or leave it unchanged to be decreased

later by a separate instruction

- the values on both ends of a jump (conditional or unconditional) should be the same

« the value at the function entry and return instructions should be O

* between prolog and epilog the SP delta should remain the same with the exception
of small areas around calls where it can increase by pushing arguments but then

should return back to “neutral” before the end of the basic block.

In the first example, we can see that 1oc_406F9D has the SP delta of 80 and the first
jump to it is also 8eC, however the second one is 008. So the problem is likely in that

second block. Here it is separately:

Hex View-1

¥ D4 Options

{'Disassembly | Analyss ~ Crossveferences Strings Browser Graph Msc

Address representation
[Eunction offsets

[Indude segment addresses

[Use seament names

Display disassembly lnes

4 Empty lines

4] Borders between data/code (non-graph)
[Basic block boundaries (non-graph)

[sgurce line numbers

4 Try block lines.

Line prefix example: seg000:0FE+

Low suspiciousness limit (0x401000
High suspiciousness limit |0x423000

Display disassembly line parts

[Line prefixes (non-graph)

[Stack pointer

™7 Comments
[Repeatable comments
[Aute comments

Number of apcode bytes (non-graph)

Instruction indentation (non-graph)
Comments indentation (nen-graph)
Right margin (non-graph)

Spaces for tabuiation

o el |

Thttps://www.hex-rays.com/blog/simplex-method-in-ida-pro/

W aulill

https://hex-rays.com/blog/igors-tip-of-the-week-27-fixing-the-stack-pointer/
https://www.hex-rays.com/blog/simplex-method-in-ida-pro/

19Feb2021
& https://hex-rays.com/blog/igors-tip-of-the-week-27-fixing-the-stack-pointer/

00C mov ecx, offset dword_41D180
00C call _TracelLoggingRegister@4 ; TraceLoggingRegister(x)

008 push offset _TraceLogger_Getinstance_ 2 dynamic_atexit_destructor_for__s_instance__; void (__cdecl *)()

00C call _atexit

00C pop ecx

008 push ebx

00C call __Init_thread_footer
00C pop ecx

008 jmp shortloc_406F9D

We can see that eoC changes to 008 after the call to _TracelLoggingRegister@4. On
the first glance it makes sense because the @4 suffix denotes stdcall function’
with 4 bytes of arguments (which means it removes 4 bytes from the stack). However,
if you actually go inside and analyze it, you'll see that it does not use stack arguments
but the register ecx. Probably the file has been compiled with Link-time Code
Generation’® which converted _stdcall to _ fastcall to speed up the code.

In the second case the disassembly looks like following:

Here, the problem is immediately obvious: the delta becomes negative after the call. It
seems IDA decided that the function is subtracting 0x14 bytes from the stack while
there are only three pushes (3*4 = 12 or OxC). You can also go inside StringCopy-
Workeri and observe that it ends with retn @Ch - a certain indicator that this is the
correct number.

Fixing wrong stack deltas

How to actually fix the wrong delta depends on the specific situation but generally
there are two approaches:

1. Fix just the place(s) where things go wrong. For this, press Alt-K (Edit > Functions >
Change stack pointer...) and enter the correct amount of the SP change. In the first
example it should be 0 (since the function is not using any stack arguments) and in
the second 12 or Oxc. Often this is the only option for indirect calls.

2. If the same function called from multiple places causes stack unbalance issues,
edit the function’s properties (A1t-P or Edit > Functions > Edit function...) and
change the “Purged bytes” value.

This simple example shows that even having debug symbols does not guarantee
100% correct results and why giving override options to the user is important.

¥ Edit function

Name of function [StringCapyWiarker!

Start address text:00405583 ~
End address. text:00405503 ~

Color DEFAULT
si)
Saved registers 0x4 -
Purged bytes Noxe M |
Frame pointer delta 0x0 ~
[e

[Dees notretum
[Ear function
[ubrary func
[static func

[BP based frame
[] BP equals to 5P
[Fuzzy 5P

2https://docs.microsoft.com/en-us/cpp/cpp/stdcall
3 https://docs.microsoft.com/en-us/cpp/build/reference/Itcg-link-time-code-generation

https://hex-rays.com/blog/igors-tip-of-the-week-27-fixing-the-stack-pointer/
https://docs.microsoft.com/en-us/cpp/cpp/stdcall
https://docs.microsoft.com/en-us/cpp/build/reference/ltcg-link-time-code-generation

26 Feb 2021

& https://hex-rays.com/blog/igors-tip-of-the-week-28-functions-list/

The Functions list is probably one of the most familiar features of IDA's default desktop layout. But even if you use it every day,
there are things you may not be aware of.

QR 104 - pe_sr peid (pe_pe) Zidasr\currenttests\input\pe_pedb - o x

Ele Edt Jump Search Yiew Debugger Lumina Options Windows Help

BH e G4 S Y o @O ek # e X > OO om0 F @
N —

SEETT T .
Ubrary functon [l Reger fincton [l Instructon [Data Ml Unexplored |11 Extemal symbol [l Lumina function
Fncos 0 6 x| BoavenaB DlrexvewiD DsvuwresD [FewnsD Hiors D Foows D

Functon name

char *rargy, const char *venvp

Modal version

Available via Jump > Jump to function... menu, or the Ctrl-P shortcut, the modal
dialog lets you see the full width of the list as well as do some quick navigation, for
example:

1. To jump to the current function’s start, use Ctrl-P, Enter;

2. To jump to the previous function, use Ctrl-P, Up, Enter (also available as Jump-
PrevFunc action: default shortcut is Ctrl-Shift-Up);

3. To jump to the next function, use Ctrl-P, Down, Enter (also available as JumpNext-
Func action: default shortcut is Ctr1-Shift-Down).

Columns

As can be seen on the second screenshot, the Functions list has many more columns than Function name which is often the only one
visible. They are described in the corresponding help topic’. By clicking on a column you can ask IDA to sort the whole list on that
column. For example, you can sort the functions by size to look for largest ones - the bigger the function, the more chance it has a
bug; or you may look for a function with the biggest Locals area since it may have many buffers on the stack which means potential
overflows.

If you sort or filter the list, you may see the following message in the Output window:
Caching 'Functions window'... ok
Because sorting requires the whole list, IDA has to fetch it and re-sort on almost any change in the database since it may change the

list. On big databases this can become quite slow so once you don’'t need sorting anymore, it's a good idea to use “Unsort” from the
context menu.

Synchronization

The list can be synchronized with the disassembly by selecting “Turn on synchroni- i o

zation” from the context menu. Once enabled, the list will scroll to the current o e

function as you navigate in the database. You can also turn it off if you prefer to see copy G-t

a specific function in the list no matter where you are in the listing. % ﬁf:;,":l wr
. Show demangled

Columns.
Show folders

(debug) Cycle chooser tree mode
Add breakpoint

Delete breakpoint

Enable breakpoint

=g X

Disable breakpoint
Lumina »

Fort..

Debug »

Thttps://www.hex-rays.com/products/ida/support/idadoc/586.shtml

https://hex-rays.com/blog/igors-tip-of-the-week-28-functions-list/
https://www.hex-rays.com/products/ida/support/idadoc/586.shtml

26 Feb 2021

& https://hex-rays.com/blog/igors-tip-of-the-week-28-functions-list/

Folders
Since IDA 7.5, folders can be used to organize your functions. To enable, select “Show folders” in the context menu, then “Create folder

with items...” to group selected items into a folder.

Colors & styles
Library function [l Regular function [l Instruction | Data [Unexplored External symbol [l Lumina function

Some functions in the list may be colored. In most cases the colors match the legend in the navigation bar:

« Cyan: Library function (i.e. a function recognized by a FLIRT signature” as a compiler runtime library function)
» Magenta/Fuchsia: an external function thunk, i.e. a function implemented in an external module (often a DLL or a shared object)
« Lime green: a function with metadata retrieved from the Lumina database®

But there are also others:

« Light green: function marked as decompiled”
« Other: function with manually set color (via Edit function... or a plugin/script)

You may also see functions marked in bold. These are functions which have a defined prototype (i.e types of arguments, return value
and calling convention). The prototype may be defined by the user (Y hotkey®), or set by the loader or a plugin (e.g. from the DWARF
or PDB debug information).

Multi-selection
By selecting multiple items you can perform some operations on all of them, for example:

« Delete function(s)...: deletes the selected functions by removing the function info (name, bounds) from the database. The instructions
previously belonging to the functions remain so this can be useful, for example, for combining incorrectly split functions.

« Add breakpoint: adds a breakpoint to the first instruction of all selected functions. This can be useful for discovering which functions
are executed when you trigger a specific functionality in the program being debugged.

« Lumina: you can push or pull metadata only for selected functions.

2https://www.hex-rays.com/products/ida/tech/flirt/
3https://www.hex-rays.com/products/ida/lumina/
“https://www.hex-rays.com/products/decompiler/manual/cmd_mark.shtml
5 https://www.hex-rays.com/products/ida/support/idadoc/1361.shtml

https://hex-rays.com/blog/igors-tip-of-the-week-28-functions-list/
https://www.hex-rays.com/products/ida/tech/flirt/
https://www.hex-rays.com/products/ida/lumina/
https://www.hex-rays.com/products/decompiler/manual/cmd_mark.shtml
https://www.hex-rays.com/products/ida/support/idadoc/1361.shtml

05Mar 2021
& https://hex-rays.com/blog/igors-tip-of-the-week-29-color-up-your-ida/

For better readability, IDA highlights various parts of the disassembly listing using different colors; however these are not set
in stone and you can modify most of them to suit your taste or situation. Let’s have a look at the different options available for

changing colors in IDA.

Themes

In case you are not aware, IDA supports changing the color scheme used for the Ul
(windows, controls, views and listings). The default theme uses light background but
there are also two dark themes available. You can change the theme used via
Options > Colors... (“Current theme” selector). Each theme then can be customized
further by editing the colors in the tabs below. In the Disassembly tab, you can either
select items from the dropdown, or click on them in the listing, then change the color
by clicking the corresponding button.

If you prefer editing color values directly, you can update many of them at once or

even create a complete custom theme by following the directions on the
“CSS-based styling” page.

Coloring graph nodes

In the Graph View, you can color whole nodes (basic blocks) by clicking the first icon
(Set node color) in the node’s header.

After choosing the color, all instructions in the block will be colored and it will also be
shown with the corresponding color in the graph overview.

Coloring functions

Instead of (or in addition to) marking up single instructions or basic blocks you can
also color whole functions. This can be done in the Edit Function (+) dialog by
clicking the corresponding button.

Changing the color of a function colors all instructions contained in it (except those
colored individually), as well as its entry in the Functions list.

-

mov — ecx, edi

call ?SetButtonsfC
test eax, eax
jz short loc_415038

5 CToolBar::

nsuint const *,int)

[t oo overview

=

¥ Edit function 4
Mame of function | sub_415CB1 V]

Start address [textopascr v

End address -text:00415D38 ~ [Boes not returm
|go|or DEFAULT | [Far function

[Library func
Enter size of (in bytes) [static func
Local variables area - [&P based frame
Saved registers ox0 - [8P eguals to S
Purged bytes x4 “ [Fuzzy sp
Frame pointer delta 00 ad
[Cos [conca || rep |

sub_415CAB
sub_415CB1
sub_417F8E
proc

sub_41EEEF
sub_41F23C
sub_42124E

sub_421256
< >

sub_415CB1 proc near

arg_o= dword ptr 4

svarg o]

Line 13 of 240

1 30nCreate@CFrameind@BTAEHPAUL

https://hex-rays.com/blog/igors-tip-of-the-week-29-color-up-your-ida/

12Mar 2021

& htips://hex-rays.com/blog/igors-tip-of-the-week-30-quick-views/

IDA has three shortcuts as an alternative to some menus which could be cumbersome to navigate.

Quick view

Probably the most commonly used, it is triggered by the shortcut Ctrl+1 and shows
the items under the View > Open subviews menu.

It can be especially useful for opening views which have no dedicated shortcut such
as Notepad (although you can always assign a custom one via the Shortcut editor).

Quick debug view

Most useful during a debugging session, this one allows you to bypass navigating to
the Debugger > Debugger windows menu by simply pressing Ctrl+2.

Quick debug view

Last but not least, Ctr1+3 opens the list of plugin menu items listed under the Edit >
Plugins menu, allowing you to quickly invoke a specific plugin. Please note that this
list does not necessarily include all installed plugins; some plugins add menu items
elsewhere or may not have a menu item at all and work in an automatic fashion.

‘ [Guick view o

View Sharteut

= Proximity browser

[Generate pseudocade Fs

(@] Hex dump

[Address details

(] Exports

Imports

Names. Shift+F4
Functions. shift+F3
Strings Shift+Fi2
[%] segments Shift+F7
Segment registers Shift+Fs
selectors

[signatures Shift+Fs
Type libraries Shift+F11
(] structures shift+Fg
(] Enumerations Shift+F10

Local types shift+F1
Cross references
Notepad

&] problems
patched bytes ctrl+alt+R
[E] show unda history
Line 1 of 23
[oc || cancal || seach || rep
‘ [Quick debug view o
View Shorteut

3B segment registers

3B FrU registers

3B MMX registers

B XniM registers

3B VMM registers

38 Debugger window ctrl+alt+c
Thread list

Module list

Locals

(S stack view

57 Stack trace Ctrl+Alt+s
[SEH list

Watch view

Breakpoint list Ctri+Alt+B
57 stack trace Ctrl+Alt+s
Watch list

[Tracing options...

£ Trace window

[Debugger options...

[switch debugger.

Line 1 of 21

o][cacel [[seern || veb |
B4+ Quick plugins view O
Plugin Shortcut

@4 SVD file management Ctrl+Shift+F11
g sample plugin

@ Python Microcade explorer (pyhexraysdeob)

B Jump to next fixup

@ FingerMatch

B Load DWARF file

@ Change the callee address Al+F1T
@ Borland RTTI
23 Repeat RTTI command ARt+FS
@ Universal Unpacker Manual Reconstruct
& Hex-Rays Decompiler
@ Create (DT file Alt+F6
23 efiXplorer Ctri+Al+E
24 BinExport 10
2+ BinDiff 5 Ctri+6
Line 1 of 16

[oc J[el || seersn | rep

Thttps://www.hex-rays.com/blog/igor-tip-of-the-week-02-ida-ui-actions-and-where-to-find-them/

https://hex-rays.com/blog/igors-tip-of-the-week-30-quick-views/
https://www.hex-rays.com/blog/igor-tip-of-the-week-02-ida-ui-actions-and-where-to-find-them/

19Mar 2021

& https://hex-rays.com/blog/igors-tip-of-the-week-31-hiding-and-collapsing/

You may have come across the menu items View > Hide, Unhide but possibly never used them.

These commands allow you to hide, or collapse and unhide/uncollapse parts of IDA's output. They can be used in the following

situations:

Hiding instructions or data items

To make your database more compact and reduce clutter, you can opt to hide or
replace some parts of the listing by short text:

1. Select some instructions or data items
2. Invoke View > Hide (or press Ctrl+Numpad-)
3. Enter the text with which to replace the selected area (and optionally pick a color)

The instructions/data are replaced by the entered text but are not removed from the
database; you can reveal them using View > Unhide (or Ctr1+Numpad+).

Hiding whole functions

You can also hide or collapse whole functions by using the Hide command while the
cursor is on the function’s name:

You may have already seen the “COLLAPSED FUNCTION” text for library functions
detected by the FLIRT signatures (colored cyan in the function list and navigation
bar). The actual implementation of library functions is rarely important for analyzing
the program’s code so IDA collapses them to not distract the user.

Hiding structures and enums

Structure or enum definitions can be collapsed and uncollapsed similarly to
functions.

Terse struct representation

When defining structure instances in data, IDA will by default try to display them in
terse form, with everything on one line. By using Unhide, you can have it printed in
full, or verbose form, with each field on separate line and a comment with the field
name.

Conversely, you can use Hide to collapse a structure instance into a terse form (this
may not work in some cases due to the specific structure’s layout).

© |-text:73923a46 ; check section

- text:73023a56

text:73023456 loc_73923A56: 5 CODE XREF: _FindPESection+281
* |-text:73023a56 e edx

 |-text:73923857 add eax, 28h ; ('

* |text:73023854 cmp edx, ebx

2 | text:7392385C b Short Toc_73923446

%5

“ |-text:73924308 S€ru 73924368 dd 19930522h

] 9 iddenrange

esi, [eaxsoch]

Start address: text:739234%
End address: text:73923A56

[—

short loc_73923A60.
color

oxt 73825380 ; 8001 _stdcall DLUMIRCRTStartup HHISTAICE hinstoLt, WRD Fnenson, LPVOID IpReserved)
tupgl2

iblic _pllnain

= duord pte 3
= dword ptr och
= duord pte 10h

edi, edi
ush ebp.

5 CODE XREF: _DllMainCRTStartup(x,x,x)+91

text: ebp
text:73923371 b anaaize
text:

173929360 5 (00¢ho016 BYTES: COLLAPSED FUNCTION _DLLHafnCRISEarup(x,x,x). PRESS CTRL-HMPADE TO EXPAND]
29233%5 b 5 dup(occh)

del
fooosoaso v . press craawnpios 1o Boan]
£ [0000000C BYTES. COLLAPSED STRUCT SID. PRESS CTRL-WN 210]
;[BYTES. CoLLAPSED STRUCT 51D TR SmeRtry. PnEss CTrLupion 10 £ie)
§ [ssseo0io BTES Corsesed STRT _end scoersaie. 753 cin

55 CaL
pEntry. PRESS CTRL-IUWPADY TO EXPAND]
dipEntry. PRESS CTRL-MAPADS TO EXPAID]

Sao00cec BYTES. CoLLAPSED STRUCT 4 _SCOPETABLE RECORD. PRESS CTRLuNpADS 10 BXPAID]
[oos00ets BVIES. coLLAPat STRUXT ChPER REcORD. PRESS- YL mmAor To Exra]

of-0x10, al

wsmia L3 EXCEPTION REGISTRATION <nds.

ccascoo 5 (00088028 SVTES. COLLAPSED STALCT Funcino. PRESS CTRLWHPADH TO EXPAND]

* |rtesti7asaesen stru 7aspeses Fancanfo cisssesaan, 2, effset siru 739243, 0, , 0, 0, o,
_ [text:73924308 YREF: Chpeseruertntiiey: Fschre oo

O

rverUtility: i TsLRPC(vol

dd 2 :
dd offset stru_7392432C ;
e

dd
text:73924308 dd
| text:73924308 dd 1

https://hex-rays.com/blog/igors-tip-of-the-week-31-hiding-and-collapsing/

19Mar 2021

& https://hex-rays.com/blog/igors-tip-of-the-week-31-hiding-and-collapsing/

Collapsing blocks in decompiler

The decompiler also has similar but separate pair of actions. They are available in the context menu or via the Numpad- and Numpad+
hotkeys. You can collapse compound operators, as well as the variable declaration block at the start of the function.

More info:
Hide'and Unhide” (IDA)

Collapse/uncollapse item® (Decompiler)

Thttps://hex-rays.com/products/ida/support/idadoc/599.shtml
2https://hex-rays.com/products/ida/support/idadoc/600.shtml
3https://www.hex-rays.com/products/decompiler/manual/cmd_collapse.shtml

https://hex-rays.com/blog/igors-tip-of-the-week-31-hiding-and-collapsing/
https://hex-rays.com/products/ida/support/idadoc/599.shtml
https://hex-rays.com/products/ida/support/idadoc/600.shtml
https://www.hex-rays.com/products/decompiler/manual/cmd_collapse.shtml

26 Mar 2021
& https://nex-rays.com/blog/igors-tip-of-the-week-32-running-scripts/

Scripting allows you to automate tasks in IDA which can be repetitive or take a long time to do manually. We previously covered!
how to run them in batch (headless) mode, but how can they be used interactively?

Script snippets

File > Script Command... (Shift+F2)]

Srippetst Please enter scrpt body

Neme 1[print ("Hello from %05X" % here())
Default snippet

Although this dialog is mainly intended for quick prototyping and database-specific
snippets, you can save and load scripts from external files via the “Export” and
“Import” buttons. There is some basic syntax highlighting but it’s not a replacement
for a full-blown IDE. Another useful feature is that the currently selected snippet can
be executed using the Ctrl+Shift+X shortcut (“SnippetsRunCurrent” action) even

Line Tof 1 Lnei1 Column:3s.

Saiptng language [pyton | Tebsie |

Command Line Interface (CLI)

The input line at the bottom of IDA's screen can be used for executing small one-line e
expressions in IDC or Python (the interpreter can be switched by clicking on the

button).

et: e1s2. 1808 140100 00000000000000000001100000001000b ... *
o. 0o 00000000000000000000000000000000b * ...
4188783, 40117Fn 200105770 00000000010000000001000101111111b *
: essa7. aoooin 2000010 00000000000000010000000000000001
o. 0o 00000000000000000000000000000000b

While somewhat awkward to use for bigger tasks, it has a couple of unique features: ¢

1DC - Nt
Python - IDAPython plugin

« the result of entered expression is printed in the Output Window (unless inhibited
with a semicolon). In case of IDC, values are printed in multiple numeric bases and
objects are pretty-printed recursively.

« It supports limited Tab completion®.

av:
iz

Command Line Interface (CLI)

If you already have a stand-alone script file and simply want to run it, File > Script file.. (A1t+F7) is probably the best and quickest
solution. It supports both IDC and Python scripts.

Recent scripts

Recent scripts []

The scripts which were executed through the “Script file...” command are remem-

bered by IDA and can be executed again via the Recent Scripts list (View > Recent 3 2 idasrocumentinidomencyide
scripts, or A1t+F9). You can also invoke an external editor (configured in Options >

General..., Misc tab) to edit the script before running.

§ c\UsersVigonDownloads\tempy

Line20f2

Command Line Interface (CLI)

IDA ships with some example scripts which can be found in “idc” directory for IDC and “python/examples” for IDAPython. There are
also some user-contributed scripts in the download area®.

'https://www.hex-rays.com/blog/igor-tip-of-the-week-08-batch-mode-under-the-hood/
2 https://www.hex-rays.com/blog/implementing-command-completion-for-idapython/
3https://hex-rays.com/products/ida/support/download/

https://hex-rays.com/blog/igors-tip-of-the-week-32-running-scripts/
https://www.hex-rays.com/blog/igor-tip-of-the-week-08-batch-mode-under-the-hood/
https://www.hex-rays.com/blog/implementing-command-completion-for-idapython/
https://hex-rays.com/products/ida/support/download/

02 Apr 2021

& https://hex-rays.com/blog/igors-tip-of-the-week-33-idas-user-directory-idaust/

The user directory is a location where IDA stores some of the global settings and which can be used for some additional
customization.

Default location
On Windows: %APPDATA%/Hex-Rays/IDA Pro
On Linux and Mac: $HOME/.idapro

For brevity, we'll refer to this path as $IDAUSR in the following text.

Contents/settings

The directory is used to store the processor module caches (proccache.1st and proccache64.1st) as well as the trusted database
caches (trusted_i64 list.bin and trusted_idb_list.bin). Trusted databases are those that were authorized by the user to be
run under debugger. The cache is used to prevent accidental execution of unknown binaries (for example, a database provided by a
third party can contain a malicious executable path so it's not run without confirmation by default).

On Linux and Mac, the user directory also contains the pseudo registry file ida.reg. It holds global IDA settings which are stored in
the registry on Windows (for example, the custom desktop layouts)).

If you modify or add shortcuts?, modifications are stored in shortcuts. cfg in this directory.

Plugins

The user directory (more specifically, $IDAUSR/plugins) can be used for installing plugins instead of IDA’s installation directory. This
has several advantages:

1. No need for administrative permissions on Windows;

2. The plugins can be shared by multiple IDA installs or versions, so there’s no need to reinstall plugins in new location when installing
a new IDA version;

3. plugins in the user directory can override plugins with the same name in IDA’s directory so this feature can be used to replace
plugins shipped with IDA.

Both native (C++) and scripted (Python/IDC) plugins can be used this way.

Config files

To change some default options, you sometimes need to edit configuration files in IDA's cfg subdirectory (for example, ida.cfg or
hexrays.cfg). Instead of editing them in-place, you can extract only the options you need to change and put them into the
same-named file in $IDAUSR/cfg. Unlike the plugins, the config files don’t override IDA's files completely but are applied additionally.
For example, to enable synchronization and split view® for the decompiler, put the following lines in $IDAUSR/cfg/hexrays.cfg:

/1--

PSEUDOCODE_SYNCED=YES
PSEUDOCODE_DOCKPOS=DP_RIGHT
/1--

Other addons

The user directory can also be used to provide additional loaders, processor modules, type libraries and signatures. IDA will scan the
following directories for them:

$IDAUSR/loaders
$IDAUSR/procs
$IDAUSR/til/{processor}
$IDAUSR/sig/{processor}

Thttps://www.hex-rays.com/blog/igors-tip-of-the-week-22-ida-desktop-layouts/
2https://www.hex-rays.com/blog/igor-tip-of-the-week-02-ida-ui-actions-and-where-to-find-them/
3 https://twitter.com/HexRaysSA/status/1341745224037634049

https://hex-rays.com/blog/igors-tip-of-the-week-33-idas-user-directory-idausr/
https://www.hex-rays.com/blog/igors-tip-of-the-week-22-ida-desktop-layouts/
https://www.hex-rays.com/blog/igor-tip-of-the-week-02-ida-ui-actions-and-where-to-find-them/
https://twitter.com/HexRaysSA/status/1341745224037634049

02 Apr2021

& https://hex-rays.com/blog/igors-tip-of-the-week-33-idas-user-directory-idaust/

IDAPython

If a file named idapythonrc.py is present in the user directory, it will be parsed and executed at the end of IDAPython’s initialization.
This allows you, for example, to add custom IDAPython functions, preload some commonly used scripts, or do any other customization
that’s more convenient to do in Python code.

Overriding the user directory location

If you prefer to use a custom location for user settings or need several sets of such directories, you can set the IDAUSR environment
variable to another path (or even a set of paths) before running IDA.

Overriding the user directory location

If you copied files to the correct location but IDA does not seem to pick them up, you can use the -z commandline switch* to confirm
that it’s finding your file. For example, the following command line enables debug output of processing of all types of customizations
(plugins, processor modules, loaders, FLIRT signatures, config files) and also copies the debug output to a log file:

ida -zFC -Lida.log file.bin

Among the output, you should see lines similar to following:

Scanning plugins directory C:\Users\Igor\AppData\Roaming\Hex-Rays\IDA Pro\plugins, for *.dll.

Scanning plugins directory C:\Users\Igor\AppData\Roaming\Hex-Rays\IDA Pro\plugins, for *.idc.

Scanning plugins directory C:\Program Files\IDA Pro 7.6\plugins, for *.dll.

Scanning plugins directory C:\Program Files\IDA Pro 7.6\plugins, for *.idc.

<oul>

Scanning directory 'C:\Users\Igor\AppData\Roaming\Hex-Rays\IDA Pro\loaders' for loaders

So you can verify whether IDA is looking in the expected location.

For even more details on this feature, please check Environment variables® (IDAUSR section).

“https://www.hex-rays.com/blog/igor-tip-of-the-week-07-ida-command-line-options-cheatsheet/
5 https://www.hex-rays.com/products/ida/support/idadoc/1375.shtml

https://hex-rays.com/blog/igors-tip-of-the-week-33-idas-user-directory-idausr/
https://www.hex-rays.com/blog/igor-tip-of-the-week-07-ida-command-line-options-cheatsheet/
https://www.hex-rays.com/products/ida/support/idadoc/1375.shtml

09 Apr2021

& htips:/hex-rays.com/blog/igors-tip-of-the-week-34-dummy-names/

In IDA's disassembly, you may have often observed names that may look strange and cryptic on first sight: sub_73906D75,
loc_40721B, off_40A27C and more. In IDA's terminology, they’re called dummy names. They are used when a hame is required
by the assembly syntax but there is nothing suitable available, for example the input file has no debug information (i.e. it has
been stripped), or when referring to a location not present in the debug info. These names are not actually stored in the

database but are generated by IDA on the fly, when printing the listing.

Dummy name prefixes

The dummy name consists of a type-dependent prefix and a unique suffix which is
usually address-dependent. The following prefixes are used in IDA:

« sub_ instruction, subroutine(function) start
* locret_ areturn instruction

* loc_ other kind of instruction

« of f_ data, contains an offset(pointer) value
* seg_data, contains a segment address value
+ asc_ data, start of a string literal

* byte_ data, byte

*word_ data, 16-bit

 dword_ data, 32-bit

* qword_ data, 64-bit

* byte3_ data, 3-byte

« xmmword_ data, 128-bit

« ymmword_ data, 256-bit

* packreal_ data, packed real

« f1t_ floating point data, 32-bit

«dbl_ floating point data, 64-bit

« tbyte_ floating point data, 80-bit

* stru_ structure

 custdata_ custom data type

+ algn_ alignment directive

« unk_ unexplored (undefined, unknown) byte

W Warning X

i 328: can't rename byte as 'sub_x' because the name has a reserved prefix.

Lo 0 e |

Because the prefixes are treated in a special way by IDA, they’re reserved and cannot be used in user-defined names. If you try to use

such a name, you'll get an error from IDA:

Warning 328: can't rename byte as 'sub_x' because the name has a reserved prefix.
Warning: can’'t rename byte because the name has a reserved prefix

A possible workaround is to add an underscore at the start so the prefix is different. But if you want to get rid of an existing name and

have IDA use a dummy name again, just delete it (rename to an empty string).

Name suffixes

The default suffix is the linear (aka effective) address of the item to which the dummy
name is attached. However, this is not the only possibility. By using the Options >
Name representation... dialog, you can choose something different.

Dummy name representation dialog

The options from the first half can be especially useful when dealing with segmented
programs such as 16-bit DOS software; instead of a global linear address you can
see the segment and the offset inside it so, for example, it is evident when the
destination is in another segment.

DOS program when using “segment name & offset from the segment base” repre-
sentation

https://hex-rays.com/blog/igors-tip-of-the-week-34-dummy-names/

09 Apr 2021

& htips:/hex-rays.com/blog/igors-tip-of-the-week-34-dummy-names/

Other prefixes
In addition to dummy names, there are two other kinds of autogenerated names that ¥ 104 0ptins %
are used in IDA: Onssently | Ardis | Crossefreces | {0t | rowser | G | e
[Generate names Name generation
] 4 Comment string references. _Preﬁx :

Stack variables (var_) and arguments (arg_). Sonatiainestive o (cssnoting) [0 | e

. . . N . Default string literal __CSME - Preserve case
String literal names generated from their text (e.g. aException for “exception”) S D et s nones
The stack prefixes are hardcoded and not configurable but the latter can be config- etat 5t o
ured in Options > General..., Strings tab. et 528t i
Strings options
Unlike the dummy names, these names are stored in the database marked as
autogenerated so their prefixes are not considered reserved and you can use them
in custom names. Lo

https://hex-rays.com/blog/igors-tip-of-the-week-34-dummy-names/

16 Apr 2021

& https://hex-rays.com/blog/igors-tip-of-the-week-35-demangled-names/

Name mangling (also called name decoration) is a technigue used by compilers to implement some of the features required
by the language. For example, in C++ it is used to distinguish functions with the same name but different arguments (function
overloading), as well as to support namespaces, templates, and other purposes.

Mangled names often end up in the final binary and, depending on the compiler, may be non-trivial to understand for a human
(a simple example: “operator new” could be encoded as ??2@YAPAXI@Z or _zZnwm). While these cryptic strings can be decoded
by a compiler-provided utility such as undname (MSVC) or c++filt (GCC/Clang), it's much better if the disassembler does it
for you (especially if you don’t have the compiler installed). This process of decoding back to a human-readable form is called
demangling. IDA has out-of-box support for demangling names for the following compilers and languages:

» Microsoft (Visual C++)

« Borland (C++, Pascal, C++ Builder, Delphi)

» Watcom (C++)

« Visual Age (C++)

« DMD (D language)

» GNU mangling (GCC, Clang, some commercial compilers)
« Swift

You do not need to pick the compiler manually; IDA will detect it from the name format and apply the corresponding demangler
automatically.

Demangled name options

By default, IDA uses a comment to show the result of demangling, meaning that
every time a mangled name is used, IDA will print a comment with the result of
demangling. For example, ?FromHand1e@CGdiObject@@SGPAV1@PAX@Z demangles to Show demangled C-++ names as
CGdiObject: :FromHandle(void *), which is printed as a comment:

* Demangled C++ names *

ID Comments
If you prefer, you can show the demangled result in place of the mangled name @uames
instead of just a comment. This can be done in the Options > Demangled names...
dialog: (O Don't demangle

|:| Assume GCC v3.x names

[] override type info

| Setupshortnames | | Setuplong names |

[oc || cancel || reb |

[FEE]

esi+138h]

1e@CGdiobje 5 CGdiobject id =)

s:Deleteobject
edi

https://hex-rays.com/blog/igors-tip-of-the-week-35-demangled-names/

16 Apr 2021

& htips://hex-rays.com/blog/igors-tip-of-the-week-35-demangled-names/

Short and long names

The buttons “Setup short names” and “Setup long names” allow you to modify the O Demangled C++ names X
behavior of the built-in demangler in two common situations. The “short” names are

Demangled C++ names Suppress pointer modifiers
used in contexts where space is at premium: references in disassembly, lists of
functions and so on. “Long” names are used in other situations, for example when L] crly main name @
printing a comment at the start of the function. By using the additional options dialog, WO &
you can select what parts of the demangled name to show, hide, or shorten to make & Remove some caling cony O &1 _
it either more compact or more verbose. [o return type 8 :Liﬁb' ‘

[] Mo "based"() specifier

_ O _ptrgs
[] remove all calling conv O Displayal
4] No postfix const @ Display none
[Mo access keywords
[Mo throw descriptions
[Mo static and virtual [signed int as 'sint’

[Mo udt keywords

[Mo const and valatile [spaces after commas
(A Mo __dosure keyword
[Mo __ungligned keyword

[N __pin/_box/_ac L] Quashi_

[Transferi_

[1gnore postfix _nn (duplicate)

[oc]| concel || b |

Name simplification

Some deceptively simple-looking names may end up very complicated after compilation, especially when templates are involved. For
example, a simple std: :string' from STL actually expands to

std::basic_string<char,std::char_traits<char>,std::allocator<char>>

To ensure interoperability, the compiler has to preserve these details in the mangled name, so they reappear on demangling; however,
such implementation details are usually not interesting to a human reader who would prefer to see a simple std:string again. This is
why IDA implements name simplification as a post-processing step. Using the rules in the file cfg/goodname.cfg, IDA applies them to
transform a name like

std::basic_string<char,struct std::char_traits<char>,class std::allocator<char> > & _ thiscall std::ba-
sic_string<char,struct std::char_traits<char>,class std::allocator<char> >::erase(unsigned int,unsigned int)

into
std::string & std::string::erase(unsigned int,unsigned int)
which is much easier to read and understand.

IDA ships with rules for most standard STL classes but you can add custom ones too. Read the comments inside goodname. cfg for
the description of how to do it.

More info: Demangled names in IDA Help.

' https://en.cppreference.com/w/cpp/string
2https://www.hex-rays.com/products/ida/support/idadoc/611.shtml

https://hex-rays.com/blog/igors-tip-of-the-week-35-demangled-names/
https://en.cppreference.com/w/cpp/string
https://www.hex-rays.com/products/ida/support/idadoc/611.shtml

23 Apr2021
& https://hex-rays.com/blog/igors-tip-of-the-week-36-working-with-list-views-in-ida/

List views (also called choosers or table views) are used in many places in IDA to show lists of different kind of information. For
example, the Function list’ we've covered previously is an example of a list view. Many windows opened via the View > Open
subviews menu are list views:

» Exports

* Imports

* Names

« Strings

» Segments

« Segment registers
« Selectors

« Signatures

* Type libraries
« Local types

* Problems

« Patched bytes

Many modal dialogs from the Jump menu (such as those for listing Cross references?) are also examples of list views. Because
they are often used to select or choose one entry among many, they may also be called choosers.

List view can also be part of another dialog or widget, for example the shortcut list in the Shortcut editor®. These are called
“embedded choosers” in the IDA SDK.

All list views share common features which we discuss below.

Text search
You can search for arbitrary text in the contents of the list view by using Alt-T to ,;: - — -
specify the search string and Ctrl-T to find the next occurrence. @ g Sann Puapizz
E) 0046A9) Enter the search substring X pi3z
1 0046A9) stmg [- — a2
P T [oot bos
0046A94C RegClosekey ADVEPI32
0046A950 RegCreateKeyExA ADVAPI32
ﬁ\e?uﬁzﬁ . .
Incremental search
Simply start typing to navigate to the closest item which starts with the typed text. tmporis a
The text will appear in the status bar. Use Backspace to erase incorrectly typed e ockel[tame T
letters and Ctrl-Enter to jump to the next occurrence of the same prefix (if any). ooassss Reqopmertin ADVAPIS2

0046A958 RegSetvalueExA ADVAPI32
RegOpenKeyA ADVAPIZ2

ADVA

17 InitCommonControls COMCTL32
00464370 SelectObject GDIz2
=

regerea |

Columns

Each list view has column headers at the top. In most (not all) of them, you can hide specific columns by using “Hide column” or
“Columns...” from the context menu.

Similarly to the standard list views in most OSes, you can resize columns by dragging the delimiters between them or auto-size the
column to fit the longest string in it by double-clicking the right delimiter.

Thttps://www.hex-rays.com/blog/igors-tip-of-the-week-28-functions-list/
2https://www.hex-rays.com/blog/igor-tip-of-the-week-16-cross-references/
3 https://www.hex-rays.com/blog/igor-tip-of-the-week-02-ida-ui-actions-and-where-to-find-them/

https://hex-rays.com/blog/igors-tip-of-the-week-36-working-with-list-views-in-ida/
https://www.hex-rays.com/blog/igors-tip-of-the-week-28-functions-list/
https://www.hex-rays.com/blog/igor-tip-of-the-week-16-cross-references/
https://www.hex-rays.com/blog/igor-tip-of-the-week-02-ida-ui-actions-and-where-to-find-them/

23 Apr2021

& https://hex-rays.com/blog/igors-tip-of-the-week-36-working-with-list-views-in-ida/

Sorting

The list view can be sorted by clicking on a column’s header. The sorting indicator
shows the direction of sorting (click it again to switch the direction). Because IDA
needs to fetch the whole list of items to sort them, this can be slow in big lists so a
reminder with the text “Caching <window>...” is printed in the Output window each
time the list is updated and re-sorted. To improve the performance, you can disable
sorting by using “Unsort” from the context menu.

Filtering

A quick filter box can be opened by pressing Ctrl-F. Type some text in it to only
show items which include the typed substring. By default it performs case-insensitive
match on all columns, however you can modify some options from the context menu,
such as:

« enable case-sensitive matching

» match only whole words instead of any substring

« enable fuzzy matching

« interpret the entered string as a regular expression
« pick a column on which to perform the matching

Instead of a quick filter, you can also use more complicated filtering (“Modify Filters”
from context menu, or Ctrl-shift-F). In this dialog you can not only include match-
ing items, but also exclude or simply highlight them with a custom color.

Similarly to sorting, filtering requires fetching of the whole list which can slow down
IDA, especially during autoanalysis. To remove any filters, choose “Reset filters” from
the context menu.

See also: How To Use List Viewers in IDA*

Imports

Address. Ordinal Mame — Library
0046A3CC AbortDoc GDI32
[Z] 0046AFC4 AdjustwindowRectEx USER32
=] 0046AF70 AppendMenul USER32
F¥Z) 0046B0DO BeginDeferwWindowPos USER32
(=] 00468008 BeginPaint USER32
FE| 0046A978 BitBIt GDI32
regcr
[Caching 'Imports'... ok
AU: idle | Down Disk: 21568
[imports
Address Ordinal Name Uibrary
) 00401030 RegOpenkeyExw ADVAPIZ2
3 00401034 RegCloseKey ADVAPIZ2
) 00401038 RegOpenkeyW ADVAPIZ2
0040103 Pt ApvaPIz2
& oos0102¢ Match cose ADVAPIS2
Whole werds
Regular expression
(¥ Fuzzy matching
[om0
Font...
% [Creer pddress
Line2of s Ordinel
Caching ‘Impores'... ok Name
Lee]| =
W Medify filters... - o X
If courn [Neme v |[contains | [regrey] then [x highlght |
o incude
D e G e (o

Fiter list

Condition Value
regkey

Column

(=

contains

Action

include

Flags
quick-fitter|regex

4 https://www.hex-rays.com/products/ida/support/idadoc/427.shtml

https://hex-rays.com/blog/igors-tip-of-the-week-36-working-with-list-views-in-ida/
https://www.hex-rays.com/products/ida/support/idadoc/427.shtml

30 Apr2021

& https://nex-rays.com/blog/igors-tip-of-the-week-37-patching/

Although IDA is mostly intended to be used for static analysis, i.e. simply looking at unaltered binaries, there are times you do
need to make some changes. For example, you can use it to fix up some obfuscated instructions to clean up the code flow or
decompiler output, or change some constants used in the program.

Patching bytes
Individual byte values can be patched via the Edit > Patch program > Change byte... l“‘“‘_' [
| Changepee.
command. ' other ’ Change word...
Plugins ’ Assemble...

You can change up to 16 bytes at a time but you don’t have to enter all sixteen - the unotece e
remaining ones will remain unchanged.)

W Patch Bytes X

Address 0x401AE0

File offset 0x10E0

Original value BA 24D4 410089 15BC 3A 420069 33 D4 4100

values 3A 3C

Assembling instructions

Edit > Patch program > Assemble... is available only for the x86 processor and currently only supports a subset of 32-bit x86 but it still
may be useful in simple situations. For example, the nop instruction is the same in all processor mode so you can still use it to patch
out unnecessary instructions.

Patched bytes view
Available either under Edit > Patch program or in View > Open subviews submenus, Patched bytes [
this list view shows the list of the patched locations in the database and allows you Adaress Length Originl bytes

Patched bytes
30 90

I 00401AE5 89 15

Revert... Del

to revert changes in any of them.

Patching the input file
All the patch commands only affect the contents of the database. The input file T eply patches to ingut e %
always remains unaffected by any change in the database. But in the rare case when
you do need to update the input file on disk, you can use Edit > Patch program > o :f““"“:ﬁ :J'
Apply patches to input file... Ioutfle [asclorrentiestsinputioc arpe v [
Badp fle | Z:\dasrc \urmentitests input pc_iw. gt bak -] L=
Ed{creste baghp]
[0 mestore origral brvtes
o][e b
Creating a difference file
File > Produce file > Create DIF File... outputs a list of patched location into a simple T pe_srpe.di - Notepsd - o x
text file which can then be used to patch the input file manually in a hex editor or Fle Edit Format Yiew Help

frhis difference file was created by IDA

using a third party tool.

Ec_ar.pe

00010E1l: 24 90
000010E2: D4 90
000010E3: 41 90

Patching during debugging

During debugging, patching still does not affect the input file, however it does affect the program memory if the location being patched
belong to a currently mapped memory area. So you can, for example, change instructions or data to see how the program behaves in
such situation.

https://hex-rays.com/blog/igors-tip-of-the-week-37-patching/

30 Apr2021

& https:/hex-rays.com/blog/igors-tip-of-the-week-37-patching/

Third party solutions
If the basic patching features do not quite meet your requirements, you can try the following third party plugins:

« IDA Patcher' by Peter Kacherginsky, a submission to our 2014 plugin contest”
« KeyPatch® by the Keystone Engine project, a winner of the 2016 contest®

See also: IDA Help: Edit|Patch core submenu?®

'https://github.com/iphelix/ida-patcher
2https://www.hex-rays.com/contests_details/contest2014/
3https://www.keystone-engine.org/keypatch/
“https://www.hex-rays.com/contests_details/contest2016/
5https://www.hex-rays.com/products/ida/support/idadoc/526.shtml

https://hex-rays.com/blog/igors-tip-of-the-week-37-patching/
https://github.com/iphelix/ida-patcher
https://www.hex-rays.com/contests_details/contest2014/
https://www.keystone-engine.org/keypatch/
https://www.hex-rays.com/contests_details/contest2016/
https://www.hex-rays.com/products/ida/support/idadoc/526.shtml

07May 2021

& https:/hex-rays.com/blog/igors-tip-of-the-week-38-hex-view/

In addition to the disassembly and decompilation (Pseudocode) views, IDA also allows you to see the actual, raw bytes behind
the program'’s instructions and data. This is possible using the Hex view, one of the views opened by default (or available in the
View > Open subviews menu).

Even if you've used it before, there may be features you are not aware of.

baf @t v X b 0 O oo o~ % [@ ¢
T I] AL TUIURD T
dored | External symbol [l Lumina function
 Davena B QO B & Structures B B Enums.]
Synchronization
Hex view can be synchronized with the disassembly view (IDA View) or Pseudocode Data format v
(decompiler) view. This option is available in the context menu under “Synchronize Columns 5
with”,
Text 4
Edit... F2

Synchronization can also be enabled or disabled in the opposite direction (i.e. from
IDA View or Pseudocode window). When it is on, the views’ cursors move in lockstep: [Smmiie.

changing the position in one view updates it in the other.

Font...

Highlight

There are two types of highlight available in the Hex view.
1. the text match highlight is similar to the one we've seen in the disassembly listing' and shows matches of the selected text anywhere
on the screen.

00000000002EF160 FF 01 01 00 05 00 OD OA 00 09 12 1B OD OA OD QA
00000000002EFL70 01 00 00 00 02 00 00 0O 01 00 00 00 00 OD 1A 27
00000000002EF120 2E 00 00 00 7B EF BD F7 DE 00 00 00 00 OC 1D 31
00000000008EF1S0 48 62 00 00 00 EO F& 01 00 00 00 AO A& F7 A6
00000000002EF1IAD 01 00 00 00 00 D3 FF DF 01 00 00 00 00 28 FF 28
00000000002EF1IBE0 01 00 00 00 40 17 53 17 01 00 00 00 20 17 34 17
00000000002EF1ICO 01 00 00 00 DO A4 FF A2 01 00 00 00 80 16 9C 16

2. current item highlight shows the group of bytes that constitutes the current item (i.e. an instruction or a piece of data). This can be
an alternative way to track the instruction’s opcode bytes instead of the disassembly option.

6AE9DE mov [rsp+28htvar_18], r |l500000000062E5980 33 48 8B 53 20 48 88 40
6AESDD nep dword ptr [rax] 0000000000ERESCO CO 88 44 24 40 48 8B &C
DD cal L N fal 0000000000ERESDO 89 04 24 48 89 5C 24 08
AEQES movax eax, [rsprzdntvar 1 ||ooooo oo t O e—— X
GAESEA e short loc_BAZSCL l000000000062ESFO cc cc

EMNEQEC © ol

Layout and data format

The default settings use the classic 16-byte lines with text on the right. You can change the format of individual items as well as the
amount of items per line (either a fixed count or auto-fit).

DGERRIE o imee E— SR

:
Columns > . 2-byte Integer 2 1 Ll L
b e ¢ L Colamns T (U Ao
Edit... F2 3-byte Integer 8 1 Text 3 1

H savetofike.. Single Float (32-bit) F Edit... F2 7
Synchronize with v Double Float (64-bit) D] 4

Long Double (80-bit) L ‘H savetofile..

Font... : - 3

FF 44B6 1824 D5EB GFER with names 1 hroni ith >

BE 1824 DSEB 6FES DBCI Addresses with text | Synchronize w 16

FF FFéA FFFF CCCC CCCO)

6 FFFF CCCC CCCC cccc. Hexadecimal H] Font... 32

FF CCCC CCCC CCCC CCCd Unsigned 5 -

CC CCCC CCCC CCOCC Cocd) 64

i ocom 2825 o000 4soc Sined s 1486 1824 DSEE GFES DAL

Thttps://www.hex-rays.com/blog/igors-tip-of-the-week-26-disassembly-options-2/

https://hex-rays.com/blog/igors-tip-of-the-week-38-hex-view/
https://www.hex-rays.com/blog/igors-tip-of-the-week-26-disassembly-options-2/

07 May 2021

& https://hex-rays.com/blog/igors-tip-of-the-week-38-hex-view/

Text options

Text area at the right of the hex dump can be hidden or switched to another encoding
if necessary.

Editing (patching)

Hex view can be used as an alternative to the Patch program menu?. To start patch-
ing, simply press F2, enter new values and press F2 again to commit changes (Esc to
cancel editing). An additional advantage is that you can edit values in their native
format (e.g. decimal or floating-point), or type text in the text area.

Debugging

Default debugging desktop has two Hex Views, one for a generic memory view and
one for the stack view (synchronized to the stack pointer). Both are variants of the
standard hex view and so the above-described functionality is available but there are
a few additional features available only during debugging:

1. Synchronization is possible not only with other views but also with a value of a
register. Whenever the register changes, the position in the hex view will be updat
ed to match (as long as it is a valid address).

2. A new command in the disassembly view’s context menu allows to open a hex view
at the address of the operand under cursor.

8B 4820 BH.Z H.@-H

s
Dalaiiynat 20 4238 .Z-H.G-HIJ
Columns * k3o 7428 -H.@-HIJ(T

[show
R

Edit...
Database default (UTF-8)
E Save to file...
Synchronize with 4 windows-1252
UTF-32LE
Font...
Add enceding...

tES40 1BES D541 OFFF +

42 €5 6C 6C 6F 20 77 €F 72 €C .15 -H.Hello -worl
08 EB 24 D8 FF FF 80 7C 24 10 d!®H 7% 1
24 30 48 BB 48 2B 48 BB 54 24 Data format 4
8B 40 20 48 39 4A 23 74 10 31 8
8B 8C 24 20 4B 83 Cg 28 C3 48 .
24 08 48 89 4C 24 10 OF 1F 00 . Toxt

Columns L4

CC CC CC CC CC CC CcC CC CC cC
00 00 00 48 8B 89 00 00 00 QO E Save to file...

C
Cgs 00 00 00 48 83 EC 28 48 89 H
24 20 48 BB 44 24 30 48 BS 04 1
48 89 4C 24 08 OF 1F 44 00 00 §
7C 24 10 00 74 3A 48 BB 44 2¢ . Font...

Synchronize with 3

Data format 4 RIP, IDA View-RIP
Columns 4 RSP, Stack view
Text » R
Apply changes F2 RBX
; RCX
E Save to file...
RDX
| gncheonizewith > gy
Font... RDI
.dTTETTTIO—ToToTT REP
:arted (tid=8952) RE
11s for 'E:\perforce\ic
ywider R9
de ', R10
JOL_PATH
B file details from 'E LR
R12
R13
4 213GB
R14
search RIS
| % Jump to operand Enter ﬁ
)i Jump in @ new window Alt+Enter
b e R
1 E;] Use standard symbolic constant
3 Ee—
ffz] frsp+58h1 a T
fia] [rsp+g8] H -38h
2 -3@h
[rsp+1300] B
P2 [rsp+1011000b] B r -18h
B [rspx] R E
] Manyal.. Alt+F1 B
2]
mﬁ Undefine operand 15n]
f Edit function... Alt+P
== Hide Ctrl+ Numpad-+-
|% Text view
:%3 Proximity browser MNumpad+- I
. ¥ Undefine u PBBEBBADBSD/

2https://www.hex-rays.com/blog/igors-tip-of-the-week-37-patching/

https://hex-rays.com/blog/igors-tip-of-the-week-38-hex-view/
https://www.hex-rays.com/blog/igors-tip-of-the-week-37-patching/

14May 2021

& htips://hex-rays.com/blog/igors-tip-of-the-week-39-export-data/

The Edit > Export Data command (Shift+E) offers you several formats for extracting the selected data from the database:

* hex string (unspaced): 4142434400

« hex string (spaced): 4142 43 44 00

« string literal: ABCD

« C unsigned char array (hex): unsigned char aAbcd[] = { Ox41, 0x42, 0x43, 0x44, 0x00 };

« C unsigned char array (decimal): unsigned char aAbcd[] = { 65, 66, 67,68,0 };

« initialized C variable: struc_40D09B test = { 16961, 17475 }; NB: this option is valid only in some cases, such as for structure
instances or items with type information.

- raw bytes [can be only saved to file]

test struc_48DB9B <4241h, 4443h>
¥ Export data X

Export as

O hex string (unspaced)

O hex string (spaced)

O string literal

O € unsigned char array (hex)
O ¢ unsigned char array {decimal)
@ finitialized C variable !

O rawbytes

Save data to dipboard

Preview

struc_400098 test =
{16961, 17475 };

Line:1 Column:l
outputfie |testixt V]

Data in the selected format is shown in the preview text box which can be copied to the clipboard or saved to a file for further
processing.

https://hex-rays.com/blog/igors-tip-of-the-week-39-export-data/

21May 2021

& htips://hex-rays.com/blog/igors-tip-of-the-week-40-decompiler-basics/

The Hex-Rays decompiler is one of the most powerful add-ons available for IDA. While it’s quite intuitive once you get used to
it, it may be non-obvious how to start using it.

Basic information

As of the time of writing (May 2021), the decompiler is not included with the standard IDA Pro license; some editions of IDA Home and
IDA Free include a cloud decompiler, but the offline version requires IDA Pro and must be purchased separately.
The following decompilers are currently available:

* x86 (32-bit)

* X64 (64-bit)

+ ARM (32-bit)

+ ARM64 (64-bit)
+ PPC (32-hit)

+ PPC64 (64-bit)
* MIPS (32-bit)

Pick the matching IDA

The decompiler must be used with the matching IDA: 32-bit decompilers only work W Warming %
with 32-bit IDA (e.g. ida.exe) while 64-bit ones require ida64. If you open a 32-bina-

ry |n IDAG4 and press FS, youa" get a Warning: & Please use ida (not idabd) to decompile the current file

Warning: Please use ida (not ida64) to decompile the current file o]
If you try to decompile a file for which you do not have a decompiler, a different error O Worning <
is displayed:

Sorry, you do not have a decompiler for the current file.
& You can decompile code for the following processor(s):
ARMB4, ARM, PPC, x84

o]

Invoking the decompiler
The decompiler can be invoked in the following ways:

1. View > Open subviews > Generate pseudocode (or simply F5). This always opens a new pseudocode view (up to 26);

2. Tab switches to the last active pseudocode view and decompiles current function. If there are none, a new view is opened just like
with F5.

Tab can also be used to switch from pseudocode back to the disassembly. Whenever possible, it tries to jump to the corresponding
location in the other view.

3. Full decompilation of the whole database can be requested via File > Produce file > Create C file... (hotkey Ctr1+F5). This command
decompiles selected or all functions in the database (besides those marked as library functions) and writes the result to a text file.

Changing options

Because of its origins as a standalone plugin, the decompiler’s options are not currently present in the Options menu but are accessed
via Edit > Plugins > Hex-Rays Decompiler.

This dialog changes options for the current database. To change them for all future files, edit cfg/hexrays.cfg. Instead of editing the
file in IDA's directory, you can create one with only changed options in the user directory’. The available options are explained in the
manual’.

Thttps://www.hex-rays.com/blog/igors-tip-of-the-week-33-idas-user-directory-idausr/
2 https://www.hex-rays.com/products/decompiler/manual/config.shtml

https://hex-rays.com/blog/igors-tip-of-the-week-40-decompiler-basics/
https://www.hex-rays.com/blog/igors-tip-of-the-week-33-idas-user-directory-idausr/
https://www.hex-rays.com/products/decompiler/manual/config.shtml

21May 2021

& htips://hex-rays.com/blog/igors-tip-of-the-week-40-decompiler-basics/

¥ Hex-Rays Decompiler %

Hex-Rays Decompiler (ARM)
Version v7.5.0,201028

Copyright (c) 2007-2020 Hex-Rays <support@hex-rays.com >

Licensed to:
56-3F1F-5694-90 Igor Skochinsky (1 user)
Support expires at:

05 Dec 2020

To decompie single function:

ViewfOpen subviens/Pseudocode

To decompile the whole program:
File Produce file/Create C fle

https:/fwww.hex-rays.com

M Hex-Rays Decompiler Options

Variable definition color DEFALLT

Eunction body color DEFAULT

L Je

Marked function color

BINE
&
<l

Comment indent Default radix
Blackindent Max strlitlen
Roneeron [—
[analyssoptons 1| | Analyssoptions2 | | analysis options 3|

[Warnings 1 | [Warnings 2 | | Warnings 3 | | Warrings 4 |

To modify defauit options, please edit hexrays.cfg

x

X H

[Use uMPOUTO for out-of-function jumps
[Display casts

[Hide unordered fpu comparisons

[Use SSE ntrinsic functions

B4 1gnore overlapped variables

E Use fast structural analysis:

EA Print only constant string iterals.

Mc

W Hex-Rays D ler Analysis Op... X
[Shen ARMYE.3 PAC instructions.

[Preserve potential divisons by zero

(] Generate trap for arithmetic (MIPS)

[Lanore a division by zero trap (MIPS)

[] Do not automatically generate usercalls
[Honest _readflags()

oK Cancel
[Un-merge tal branch optimizations
[Keep curly braces for R Hec-Rays De ler Analysis Options 3 x
[Optimize away address comparisons = P =
Display stringlteral casts I

Dlassorsong Max number of function arguments | 64, o
[Pressing sc’ loses the view

MSVC-speciic options:
[Assume al functions spoil fiags

Name of dispatch guard | guard_dispatch_icall ~
[keep allindirect memory reads
[———— R of sk

exceptionr

https://hex-rays.com/blog/igors-tip-of-the-week-40-decompiler-basics/

28 May 2021

& https:/hex-rays.com/blog/igors-tip-of-the-week-41-binary-file-loader/

IDA supports more than 40 file formats out of box. Most of them are structured file formats — with defined headers and meta-
data - so they’re recognized and handled automatically by IDA. However, there are times when all you have is just a piece of a
code without any headers (e.g. shellcode or raw firmware) which you want to analyze in IDA. In that case, you can use the
binary loader. It is always available even if the file is recognized as another file format.

Processor selection

Since raw binaries do not have metadata, IDA does not know which processor 2:‘;:::«%‘“’%’“” *
module to use for it, so you should pick the correct one. By default, the metapc S e - ‘
(responsible for x86 and x64 disassembly) is selected, but you can choose another
one from the list (double-click to change). P et et .
e
Memory loading address
Without metadata, IDA also does not know at which address to place the loaded %
data, so you may need to help it. The Loading segment and Loading offset fields are
valid for the x86 family only. If the code being loaded uses a flat memory model (such
as 32-bit protected mode or 64-bit long mode), Loading segment should be left at 0
and the address specified in the Loading offset field. RaM start adcress | 0x0 <]
RAM size 0x0 v
Other processors such as ARM, MIPS, or PPC, do not use these fields but prompt for | |
memory layout after you confirm the initial selection. com
In this dialog you can specify where to place the data and whether to create an & Create ROM section
additional RAM section. By default the whole file is placed at address 0 in the ROM ROMstart address | 0x0 -]
segment but you can specify a different one or load only a part of the file by changing s [ox380 <]
the file offset and loading size.
Input file
Loading address |0x0 ~ ‘
File offset [ox0]
Loading size [ox3a0 ~]
Additional binary files can be loaded into the database using the
“File, Load file, Addtional binary file” command.
Code bitness
For processors where instruction decoding changes depending on current mode, W Please confirm pe

such as PC (16-bit mode, 32-bit protected mode, or 64-bit long mode) or ARM
(AArch32 or AArch64), you may get one more additional question.

The loaded binary file can be disassembled in two modes:
1. 64-bit mode
2.32-bit mode
Do you want to disassemble it as 64-bit code?

https://hex-rays.com/blog/igors-tip-of-the-week-41-binary-file-loader/

28 May 2021

& https:/hex-rays.com/blog/igors-tip-of-the-week-41-binary-file-loader/

Start disassembling
Finally, the file is loaded, but IDA can’t decide how to disassembile it on its own.

As suggested by the dialog, you can use € (make code) to try decoding at locations
which look like valid instructions. Typically, shellcode will have valid instructions at the
beginning, and firmware for most processors either starts at the lowest address or
uses a vector table (a list of addresses) pointing to code.

In addition to shellcode or firmware, the binary file loader can be used to analyze
other kinds of files using IDA's powerful features for marking up and labeling data and
code. For example, here’s a PNG file labeled and commented in IDA:

o

, Information

You have just loaded a binary file.

IDA cannot identify the entry point automatically as

there is no standard of binaries.

Please move to what you think is an entry point
and press 'C' to start the autoanalysis.

[] pon't display this message again

o]

- -
db 10h ﬁ Rename N
db 48h ; H Pascal string
db 31h ; 1 &
db 0COh — <
db SFh ; mf ByteOEBh
db 48h ; B @Y Word 10EBh
db 31h ; 1 g% Doubleword 314810EBh
Eﬂ ‘Quadro word 31485FC0314810EBh
§* Add breakp F2
| Jmp short loc_ 12

loc 2:

xor rax, rax

pop rdi

=or rsi, rsi

XoOr rdx, rdx

add rax, 3Bh ; ';'

syscall
loc_12:

call loc_2

aPng

alhdr

aZtxt

db 8%h
db 'PNG',@Dh,8Ah

db 1Ah,8ah

dd eDeeseoeh 5 size = @xD (big endian)
db "IHDR' 5 header chunk

dd ereezeeoeh 5 width= ex2re

dd esezeeech 5 height = ex3eB

db 8 5 bpp

db 2 5 color

db e 5 compression

db e 5 filter

db e 5 interlace

dd 4334E6A7h 3 cre32

dd eAB2DeRBBh ; size=8x2DAB

db "zTXt' ; compressed text chunk

aRawProfileType db 'Raw profile type exif',® ; keyword
db

; separator

; compressed data
db 78h, @DAh, @ADh, 9Ch, 69h, 92h, 24h, 88Bh, @Dh, BAth

https://hex-rays.com/blog/igors-tip-of-the-week-41-binary-file-loader/

Renaming and retyping in the decompiler

04 Jun2021

& https://hex-rays. com/blog/igors-tip-of-the-week-42-renaming-and-retyping-in-the-decompiler/

Previously we've covered how to , but unmodified decompiler output is not always easy to read,
especially if the binary doesn't have symbols or debug information. However, with just a few small amendments you can
improve the results substantially. Let’s look at some basic interactive operations available in the pseudocode view.

Text input dialog boxes (e.g. Enter Comment or Edit Local Type)

Although it sounds trivial, renaming can dramatically improve readability. Even some-
thing simple like renaming of v3 to counter can bring immediate clarity to what's
going on in a function. Coupled with the auto-renaming feature , this
can help you propagate nice names through pseudocode as you analyze it. The
following items can be renamed directly in the pseudocode view:

* local variables

« function arguments

« function names

- global variables (data items)
« structure members

Renaming is very simple: put the cursor on the item to rename and press N - the
same shortcut as the one used in the disassembly listing. Of course, the command is
also available in the context menu.

You can also choose to do your renaming in the disassembly view instead of pseudo-
code. This can be useful if you plan to rename many items in a big function and don't
want to wait for decompilation to finish every time. Once you finished renaming,
press F5 to refresh the pseudocode and see all the new names. Note that register-al-
located local variables cannot be renamed in the disassembly; they can only be

Retyping

Type recovery is one of the hardest problems in decompilation. Once the code is
converted to machine instructions, there are no more types but just bits which are
being shuffled around. There are some guesses the decompiler can make neverthe-
less, such as a size of the data being processed, and in some cases whether it's
being treated as a signed value or not, but in general the high-level type recovery
remains a challenge in which a human brain can be of great help.

For example, consider this small ARM function:

sub_4FF203A8
SUB R2, RO, #1
loc_A4FF203AC
LDRB R3, [R1],#1
CMP R3, #0
STRB R3, [R2,#1]!
BNE loc_4FF203AC
BX LR

Its initial decompilation looks like this:

We see that the decompiler could guess the type of the second argument (a2,
passed in R1) because it is used in the LDRB instruction (load byte). However, v2
remains a simple int because the first operation done on it is a simple arithmetic SUB
(subtraction). Now, after some thinking it is pretty obvious that both v2 and result
are also byte pointers and the subtraction is simply pointer math (since pointers are
just numbers on the CPU level).

We can fix things by changing the type of both variables to the same unsigned
__int8 * (or the equivalent unsigned char *).To do this, put cursor on the variable
and press Y, or use “Set Ivar type” from the context menu.

Thttps://hex-rays.com/blog/igors-tip-of-the-week-40-decompiler-basics/
2https://hex-rays.com/products/ida/news/7_6/

Igor’s tip of the week - season 01

(g [T
Synchronize with L4
(Rename lvar...
Set Ivar type...
(Convert to struct *...
int _fastca _4FF203A8(int result, unsigned _ints *a2)
ol
int w23 //
int 3; Vs
- S
do
{
= *altt;
=(_BYTE *)++v2 =

}
while ()i
return ;

*alth}
= Y
. Synchionize with »
while { v3);
return Rename Ivar... N

Set buar bype... ¥
W Plesse enter a string

Please enter the type dedaration | unsigned char™

https://hex-rays.com/blog/igors-tip-of-the-week-42-renaming-and-retyping-in-the-decompiler/
https://hex-rays.com/blog/igors-tip-of-the-week-40-decompiler-basics/
https://hex-rays.com/products/ida/news/7_6/

04 Jun 2021

& https://hex-rays.com/blog/igors-tip-of-the-week-42-renaming-and-retyping-in-the-decompiler/

Alternatively, instead of fixing the local variable and then the argument, you can
directly edit the function prototype by using the shortcut on the function’s name in
the first line.

In that case, first argument’s type will be automatically propagated into the local
variable and you won’t need to change it manually (user-provided types have priority
over guessed ones).

In the final version there are no more casts and it’s clearer what’s happening. We'll
solve the mystery of the function’s purpose next week, stay tuned!

unsigned _ int8 * fastcall —
Synchrenize with »

unsigned __int8 *v2; // 2

int v3; // t1 Remove return value Shift+Del
Rename global item... N

v2 = result - 13

do

i Jump to xref, X

W Please enter a string

Please enter the type dedlaration |unsibned __int8 *_fastcall sub_4FF203A8(unsigned __int8 *r

unsigned __int8 *_fastcall sub_4FF203AB(unsigned __int8 *al, unsigned _ints *a2)

unsigned _ints *v2; // -2
int curbyke; // t1

V2= a1 - 13
do

curbyte = *a2+t;
*Hhv2 = curbyte;

¥
while (curbyte);
return =13

¥

https://hex-rays.com/blog/igors-tip-of-the-week-42-renaming-and-retyping-in-the-decompiler/

11Jun2021
& https:/hex-rays.com/blog/igors-tip-of-the-week-43-annotating-the-decompiler-output/

LLast week' we started improving decompilation of a simple function. While you can go quite far with renaming and retyping,
some things need more explanation than a simple renamng could provide.

Comments

When you can’'t come up with a good name for a variable or a function, you can add a comment with an explanation or a theory about
what'’s going on. The following comment types are available in the pseudocode:

1. Regular end-of-line comments. Use / to add or edit them (easy to remember because in C++ // is used for comments).

v5.field @ = @; i 'initialize field @ to @

Synchronize with
*al = *a2;

2. Block comments. Similarly to anterior comments? in the disassembly view, the Ins shortcut is used (I on Mac). The comment is
added before the current statement (not necessarily the current line).

// mark instructions in .data as executable before executing them
if (WirtualProtect(sub_¢ Synchrenize with » RITE, &fl0ldProtect))
return 8;

i1 ractnra nama nr\n+=r+1n

3. Function comment is added when you use / on the first line of the function.

// This function marks shellcode as executghles runc i+ and then restores the

int _ cdecl run_shellcede(int al) Synchronize with 4
i
int w2; // [esp+@h] [ebp-Ch] Remove return value Shift+Del
DWORD flOldProtect; // [esp+8h] [ebp-4h] .
Rename glebal item... N
// mark instructions in .data as executak Set item type... Y
if (!virtualProtect(shellcode, @x192u, F
Jump to xref... X

return 8;

Due to limitations of the implementation®, the first two types can move around or even end up as orphan comments when the pseudo-
code changes. The function comment is attached to the function itself and is visible also in the disassembly view.

Using the comments, we can annotate the function from the previous post* to clarify what is going on. On the screenshot below,
regular comments are highlighted in blue while block comments are outlined in orange.

unsigned __int8 *_ fastcall sub_4FF203A8(unsigned __int8 *al, unsigned __int8 *a2)
{

unsigned _ int8 *v2; // r2

int curbyte; // t1

I// point v2 just before all
ve = al - 15

do

1

curbyte = *a2++; // load a byte from a2 and increment the pointer
*¥++y2 = curbyte; // increment v2 and write byte to it
// (so on first iteration we'll be writing to the original al)

}

while (curbyte); // repeat while byte is not 8
|/,’ return the original value of alf

return z1;

F

In the end, the function seems to be copying bytes from a2 to at, stopping at the first zero byte. If you know libc, you'll quickly realize
that it’s actually a trivial implementation of strcpy®. We can now rename the function and arguments to the canonical names and add

a function comment explaining the purpose of the function.

"https://hex-rays.com/blog/igors-tip-of-the-week-42-renaming-and-retyping-in-the-decompiler/
2https://hex-rays.com/blog/igor-tip-of-the-week-14-comments-in-ida/
3https://hex-rays.com/blog/coordinate-system-for-hex-rays/
“https://hex-rays.com/blog/igors-tip-of-the-week-42-renaming-and-retyping-in-the-decompiler/
5https://en.cppreference.com/w/c/string/byte/strcpy

https://hex-rays.com/blog/igors-tip-of-the-week-43-annotating-the-decompiler-output/
https://hex-rays.com/blog/igors-tip-of-the-week-42-renaming-and-retyping-in-the-decompiler/
https://hex-rays.com/blog/igor-tip-of-the-week-14-comments-in-ida/
https://hex-rays.com/blog/coordinate-system-for-hex-rays/
https://hex-rays.com/blog/igors-tip-of-the-week-42-renaming-and-retyping-in-the-decompiler/
https://en.cppreference.com/w/c/string/byte/strcpy

11Jun2021

& https:/hex-rays.com/blog/igors-tip-of-the-week-43-annotating-the-decompiler-output/

// Copies thel null-terminated byte string pointed to by src,

// including the null terminator, to the character array

// whose first element is pointed to by dest.

char *__ fastcall strcpy(char *dest, const char *src)

{
char *v2; J/ r?
int curbyte; // t1

// point v2 just before al
v2 = dest - 1;

do

i

*+4+v2 = curbyte; // increment v2 and write byte to it

while (curbyte); // repeat while byte is not @
// return the original value of al
return dest;

curbyte = *(unsigned __int8 ¥)src++;// load a byte from a2 and increment the pointer

// (so on first iteration we'll be writing to the original al)

Alas, the existing comments are not updated automatically, so references to a1 and a2 would have to be fixed manually.

Empty lines

To improve the readability of pseudocode even further, you can add empty lines either manually or automatically. For manual lines,
press Enter after or before a statement. For example, here’s the same function with extra empty lines added:

char *_fastcall strcpy(char *dest, const char *src)

char *v2; [/ r2
int curbyte; // t1
// point v2 just before al

v2 = dest - 1;

do

{

curbyte = *(unsigned __int8 *)src++;// load a byte from a2 and increment the pointer

*++v2 = curbyte; // increment v2 and write byte to it

// (so on first iteration we'll be writing to the original al)

while (curbyte); // repeat while byte is not &

// return the original value of al
return dest;

t

To remove the manual empty lines, edit the anterior comment (Ins or I on Mac) and remove the empty lines from the comment.

To add automatic empty lines, set GENERATE_EMPTY_LINES = YES in hexrays.cfg. This will cause the decompiler to add empty lines
between compound statements as well as before labels. This improves readability of long or complex functions. For example, here’s a
decompilation of the same function with both settings. You can see that the second one reads easier thanks to extra spacing.

}) if (v23 == 61)
if (v23 == 61) ¢ h22;
{ w2t - 05
++v22; 1
*28 = 05 3
¥ V19 = v22 + 1;
V19 = v22 + 15 %22 = 0
20 = 85 i 2 i i
5 if (1ivans || drop_var_from_set(vi3, iVans, (unsigned __int8 **)dest]
if (lnvars || drop_var_from_set(v13, nvars, (unsigned __int8 **)dest) hselete ,(‘I,L, h:;b, Flag); . . “ 2 .
hdelete_r(v13, htab, flag); -
¥
LABEL_23: _ABEL_23:
$F (V19 >= enva || 1%v19) IF (V19 5= enva || 12019)
break;| break;
LABEL_25
Vi3 = vi9; _ABEL_25:
3 Vi3 = vi9;
V37 = 0; ¥
free(vi2);
v38 = (char *)dest - 4; V37 = @
while (v37 < nvars) free(vi2);
Default

GENERATE_EMPTY_LINES

=YES

'https://hex-rays.com/wp-content/static/products/ida/idapro_cheatsheet.html
2https://hex-rays.com/wp-content/static/products/ida/support/freefiles/IDA_Pro_Shortcuts.pdf

https://hex-rays.com/blog/igors-tip-of-the-week-43-annotating-the-decompiler-output/
https://hex-rays.com/wp-content/static/products/ida/idapro_cheatsheet.html
https://hex-rays.com/wp-content/static/products/ida/support/freefiles/IDA_Pro_Shortcuts.pdf

18 Jun2021

& https://hex-rays.com/blog/igors-tip-of-the-week-44-hex-dump-loader/

IDA has a file loader named ‘hex’ which mainly supports loading of text-based file formats such as Intel Hex'or Motorola S-Re-
cord?® These formats contain records with addresses and data in hexadecimal encoding.

For example, here’s a fragment of an Intel Hex file:

:18000000008F9603008FD801008FDCO1008FE001008FE401008FE80190
:20004000008FECO1008FFO01008FF401008FF801008FFCO1008F0002008F0402008F08024D
:20006000008F0C02008F1002008F1402008F1802008F1C02008F2002008F2402008F 280228
:14008000008F2C02008F3002008F3402008F 3802008F3C0293
:1000A000008F4002008F4402008F4802008F4C0O2F4
:120010000008F5002008F5402008F5802008F5C02008F6002008F6402008F680243204C694C
:120012000627261727920436F707972696768742028432920313939352048492D5445434818

or an S-Record

S0030000FC

S$1230100810F0016490F0016816F 8AOAOF00000098300016B2310016BC3300168EODOR16A7
$1230108280F00169A2900168A00F001866000080400000018230016792200160C00000032
S$12301109800E00182A09E0B800OC2012A38001608000000EA3100163A380016FA310016CA
S1230118FF250016BE21001600000000182200169A0100169C330016F9C010010D000RAGD7

However, you may also have a simple unformatted hex dump, with or without addresses:

0020: 59 69 74 54 55 B6 3E F7 D6 BS C9 B9 45 E6 A4 52
1000: 12 23 34 56 78

0100: 31 C7 1D AF 32 04 1E 32 05 1E 3C 32 07 1E 21 D9
12 23 34 56 78

Such files are recognized and handled by another loader called ‘dump’. Since, like raw binaries, they do not carry information
about the processor used, it has to be selected by the user.

For example, a hex dump of some MIPS code:

007C5DBC 27 BD FF D@
007C5DCO FF Bo 00 20
007C5DC4 FF BF 00 28
007C5DC8 OC 1F 17 64
007C5DCC 00 80 80 2D
007C5DDO 96 03 00 3E
007C5DD4 DF BF 00 28
007C5DD8 DF Bo 00 20
007C5DDC 00 62 18 26
007C5DEQ 2C 62 00 01
007C5DE4 03 EO 00 08
007C5DE8 27 BD 00 30

can be loaded into IDA without having to convert it to binary or a structured format like ELF.

R Lozdanewfie X CODE:@@7C5DBC 27 BD FF DO | addiu $sp, -0x30
ot e o CODE:@@7C5DCe FF BO 00 20 sd $s0, ex20($sp)
e Bt = CODE:@87C5DC4 FF BF 60 28 sd $ra, 0x28($sp)
Sinay fle CODE:007C5DCE OC 1F 17 64 jal
CODE:887C5DCC 00 80 80 2D move $<0, $a0
CODE:@@7C5DD@ 96 03 00 3E lhu $vl, ex3E($s0)
procsaops Gk o sel) CODE:887C5DD4 DF BF 08 28 1d $ra, 0x28($sp)
MIpS R5900 (Sony Playstation?) little endian 39001 - CODE:887¢5DD8 DF BO 60 20 1d $s8, 0x20($sp)
ﬂgf;{}:ﬁ: :I'::I" CODE:@87CSDDC 00 62 18 26 xor $vi, $ve
Sony PSP (Allegrex) psp i CODE:@@7CSDE@ 2C 62 @@ o1 sltiu $ve, $vi, 1
e CODE:@87CSDE4 @3 EG 60 08 jr $ra
Losdng segrent oo }| emeloptons 1 ke aptans 2| kemelaptons 3| CODE:@07CSDES 27 BD 00 30 addiu $sp, 0x30
Loadng offset 000000000 | - [Ingicator enabled [Brocessor optons.]
optons
Loadng gptons [Greate segrents Load esources
/| Filsegment gops Greate FLAT ooup 4 Rename DLL enpies
=} o O] Monualond
.

This feature could be useful when working with shellcode or exchanging data with other software. As we described before, IDA
also supports exporting data from database® as hexadecimal dump.

Thttps://enwikipedia.org/wiki/Inte| HEX
2https://enwikipedia.org/wiki/SREC_(file_format)
3https://hex-rays.com/blog/igors-tip-of-the-week-39-export-data/

https://hex-rays.com/blog/igors-tip-of-the-week-44-hex-dump-loader/
https://en.wikipedia.org/wiki/Intel_HEX
https://en.wikipedia.org/wiki/SREC_
https://hex-rays.com/blog/igors-tip-of-the-week-39-export-data/

25Jun2021

& https://nex-rays.com/blog/igors-tip-of-the-week-45-decompiler-types/

In one of the previous posts, we've discussed how to edit types of functions and variables' used in the pseudocode. In most
cases, you can use the standard C types: char, int, long and so on. However, there may be situations where you need a more
specific type. Decompiler may also generate such types itself so recognizing them is useful. The following custom types may
appear in the pseudocode or used in variable and function types:

Explicitly-sized integer types

+ __int8-1-byte integer (8 bits)

+ __int16 - 2-byte integer (16 bits

+ _int32 - 4-byte integer (32 bits)

+ __int64 - 8-byte integer (64 bits)

+ _int128-16-byte integer (128 bits)

Explicitly-sized boolean types

+ _BOOL1 - boolean type with explicit size specification (1 byte)
+ _BOOL2 - boolean type with explicit size specification (2 bytes)
+ _BOOL4 - boolean type with explicit size specification (4 bytes)

Regardless of size, values of these types are treated in the same way: O is considered false and all other values true.

Unknown types

» _BYTE - unknown type; the only known info is its size: 1 byte

* _WORD - unknown type; the only known info is its size: 2 bytes

» _DWORD - unknown type; the only known info is its size: 4 bytes

* _QWORD - unknown type; the only known info is its size: 8 bytes

* _OWORD - unknown type; the only known info is its size: 16 bytes

« TBYTE —10-byte floating point (x87 extended precision 80-bit value)

+ _UNKNOWN - no info is available about type or size (usually only appears in pointers)

Please note that these types are not equivalent to the similarly-looking \Windows data types® and may appear in non-Windows
programs.

More info: Set function/item type® in IDA Help.

Thttps://hex-rays.com/blog/igors-tip-of-the-week-42-renaming-and-retyping-in-the-decompiler/
2https://docs.microsoft.com/en-us/windows/win32/winprog/windows-data-types
3https://hex-rays.com/products/ida/support/idadoc/1361.shtml

https://hex-rays.com/blog/igors-tip-of-the-week-45-decompiler-types/
https://hex-rays.com/blog/igors-tip-of-the-week-42-renaming-and-retyping-in-the-decompiler/
https://docs.microsoft.com/en-us/windows/win32/winprog/windows-data-types
https://hex-rays.com/products/ida/support/idadoc/1361.shtml

Disassembly operand representation

02 Jul 2021

& https://hex-rays.com/blog/igors-tip-of-the-week-46-disassembly-operand-representation/

As we've mentioned before, the | in IDA stands for interactive, and we already covered some of the disassembly view’s interac-
tive features like or . However, other changes are possible too. For example, you can change the
operand representation (sometimes called operand type in documentation). What is it about?

Most assemblers (and disassemblers) represent machine instructions using a mnemonic (which denotes the basic function of
the instruction) and operands on which it acts (commonly delimited by commas). As an example, let's consider the most
common x86 instruction mov, which copies data between two of its operands. A few examples:

mov rsp, rll-copy the value of rilto rsp

mov rcx, [rbx+8]—copy a 64-bit value from the address equal to value of the register rbx plus 8 to rcx (C-like equivalent: rex
= *(int64*) (rbx+8);)

mov [rbp+390h+var 3807, 2000000h — copy the value 2000000h (0x2000000 in C notation) to the stack variable var 380

The first example uses two registers as operands, the second a register and an indirect memory operand with base register
and displacement, the third — another memory operand as well as an immediate (a constant value encoded directly in the
instruction’s opcode).

The last two examples are interesting because they involve numbers (displacements and immediates), and the same number
can be represented in multiple ways. For example, consider the following instructions:

mov eax, 64h

mov eax, 100

mov eax, 1440

mov eax, 1100100b

mov eax, 'd'

mov eax, offset byte 64
mov eax, mystruct.field 64

All of them have exactly the same byte sequence (machine code) on the binary level: B8 64 80 00 00. So, while picking another
operand representation may change the visual aspect, the underlying value and the program behavior does not change. This
allows you to choose the best variant which represents the intent behind the code without having to add a long explanation in
comments.

The following representations are available in IDA for numerical operands (some of them may only make sense in specific
situations):

1. Default number representation (aka void): used when there is no specific override applied on the operand (either by the user
or IDAs autoanalyzer or the processor module). The actually used representation depends on the processor module but the
most common fallback is hexadecimal. Uses orange color in the default color scheme. For values which match a printable
character in the current encoding, a comment with the character could be displayed (depends on the processor module).
Hotkey: # (hash sign).

mov eax, ; BT
mov eax, ; 'E°
mowv eax, : 'd’
mowv eax, s 'E°

2. Decimal: shows the operand as a decimal number. Hotkey is H.

3. Hexadecimal: explicitly show the operand as hexadecimal. Hotkey is Q.

4. Binary: shows the operand as a binary number. Hotkey is B.

5. Octal: shows the operand as an octal number. No default hotkey but can be picked from the context menu or the “Operand
type” toolbar.

6. Character: shows the operand as a character constant if possible. Hotkey: R.

7. Structure offset: replaces the numerical operand with a reference to a structure member with a matching offset. Hotkey: T.
8. Enumeration (symbolic constant): the number is replaced by a symbolic constant with the same value. Hotkey: M.

9. Stack variable: the number is replaced by a symbolic reference into the current function’s stack frame. Usually only makes
sense for instructions involving stack pointer or frame pointer. Hotkey: Kt.

Thttps://hex-rays.com/blog/igors-tip-of-the-week-24-renaming-registers/
2https://hex-rays.com/blog/igor-tip-of-the-week-14-comments-in-ida/

Igor’s tip of the week - season 01

https://hex-rays.com/blog/igors-tip-of-the-week-46-disassembly-operand-representation/
https://hex-rays.com/blog/igors-tip-of-the-week-24-renaming-registers/
https://hex-rays.com/blog/igor-tip-of-the-week-14-comments-in-ida/

02Jul2021

& htips://hex-rays.com/blog/igors-tip-of-the-week-46-disassembly-operand-representation/

10. Floating-point constant: only works in some cases and for some processors. For example, 3F000000h(0x3F000000) is actual-
ly an IEEE-754 encoding of the number 0.5. There is no default hotkey but the conversion can be performed via the toolbar or
main menu.

11. Offset operand: replace the number by an expression involving one or more addresses in the program. Hotkeys: 0, Ctrl-0
or Ctrl-R (for complex offsets).

All hotkeys revert to the default representation if applied twice.
In addition to the hotkeys, the most common conversions can be done via the context menu:

offset unk_C8&
Symbolic constant M L4

200 H
3100

11001000k

B

-OFFFFFF38h

not OFFFFFF37h ~

(Y bt B 7 [F 57 ¥ 3B

The full list is available in the main menu (Edit > Operand Type):

|BR offset v

| retn
Pall Mamber Y P tumber ety ¢
B Character R] Hexadecimal Q
f@l Segment 3 ffo] Decimal H
ti] Enum member... M Octal
Stack variable K E Binary B
E Change sign - Eloating point
EI Bitwise negate -
00, Toggle leading zerces
P4 Manual... Alt+F1
“ 3
as well as the “Operand Type” toolbar:

[moabars T e
E calculator... ? Show all

Full screen Fi1
A% Graph Overview . T
=% Recent scripts Alt+F9 File
(@ Database snapshot manager... Ctrl+Shift+ T Jumnp.
Print t regist Ctrlesy Seerch

fint segment registers l+Space
- p_‘_f "hg . P Hide/Unhide

tint internal
u Hd [Analysis
= Hide Ctrl+Numpad+- Views
4 Unhide Ctrl+Numpad++ Ep
= Hideall Lists
4 Unhidgall Signatures/Types
XK Delete hidden range Structures/Enumerations

Setup hidden items... Cross references

B-t-mtntetn by S
BB Humber defauk) r Edit
Q

mina fune 5] Hexadecimal

Two more transformations can be applied to an operand on top of changing its numerical base:

1. Negation. Hotkey _(underscore). Can be used, for example, to show -8 instead of @FFFFFFF8h (two representations of the
same binary value).

2. Bitwise negation (aka inversion or binary NOT). Hotkey: ~(tilde). For example, OFFFFFFF8h is considered to be the same as
not 7.

Finally, if you want to see something completely custom which is not covered by the existing conversions, you can use a
manual operand. This allows you to replace the operand by an arbitrary text; it is not checked by IDA so it’s up to you to ensure
that the new representation matches the original value. Hotkey: A1t-F1.

® Manual operand X
Enter alternate string for the 2 operand

Original operand: oCsh
Operand ‘two hundred| V|

[o<]| comt | b |

https://hex-rays.com/blog/igors-tip-of-the-week-46-disassembly-operand-representation/

09Jul2021

& https://hex-rays.com/blog/igors-tip-of-the-week-47-hints-in-ida/

Hints (aka tooltips) are popup windows with text which appear when you hover the mouse cursor over a particular item in IDA.

They are available in many situations.

Disassembly hints

In the disassembly view, hints can be shown in the following cases:

1. When hovering over names or addresses, a fragment of disassembly at the destination is shown.

§ DATA XREF: sub_7FFBIACA3BFO+1110]
i .data:00007FFB16992F0BL
text "UTF-16LE", ‘inner’,

2. When hovering over stack variables, a fragment of the stack frame layout is shown

mov [rbp+40h+var_50], @FFFFFFFFFFFFFFFER

mov [rsp+140h+arg 81, rbx

mov rsi, rdx .-

mov rbx, rcx -0900080000000061 db ? ; undefined

mov [rbp+40h+va -0080080080000060 var_66 dq ?

mov r12d, [rcx+|-0906000600000058 var_S8 dd ?

mov [rbp+40h-+va -0800000000000054 db ? ; undefined
-0000000000000053 db ? ; undefined

N - 0000000000000052 db ? ; undefined,|
-0000000000000051 db ? ; undefined

xor ri5d, rl5d |-0000800000000050 var_ 50 dq ?

mov [rsp+140h+vi. - -

3. When hovering over structure offset operands, the fragment of the struct definition.

mov [rax+ClexTokenSrc.field 8], @

mow [rax+CLexTokenSrc.field_16], r8

lea rcx, const CLexTokenSrc: :”vftable'

mov [rax+CLexTokenSrc._vfptr], rcx

mov [rax+CLexTokenSrc.dword18], esi

mov [rax+CLexTokenSrc . dword{ppeeeeee ; ----------——---------—-

mov [rax+ClexTokenSre . field |

at 7FFB1592CD19 P06OEOEO ClexTokenSrc struc ;
lpoe0EReR _vfptr dq ?

5t ; CODE Yeeeeeees field 8 dq ?

; DATA Yeeeeee1e field 16 dq ?
mov rex, [this+s] 100000918 dword1s dd ?
test rex, rex 10000eR1C dword1C dd ?
jz short loc_7FFB1592CD55 |9@800028 field 26 dg ?
mov [rex+8], rax

4. For enum operands - the enum with the definition.

mov edx, GENERIC_READ ; dwDesiredAccess

mov [rsp+5Dh+dwFlagsAndAttributes], eax ; dwFlagsAndAttribt
lea r8d, [rax-7D[; -==-----==---mm----mme--mmmo--m--o-oo
mov [rsp+5DBh-+du

call es:__imp_Cre|; enum MACRO_GENERIC, copyof 339, bitfield,
nop dword ptr [r(GENERIC_ALL = 16000068h

mov rcx, cs:?PszFIGENERIC_EXECUTE = 20000008h

mov ebx, cs:PFStIGENERIC WRITE = 400@0000h

mov edi, cs:?fWr|GENERIC_READ - 800000E8h 5 X

5. For renamed registers/, the hint shows the original register name

mow rcx, [this+8]
test recx, rcx

iz short loc_5

All these hints except the last one can be expanded or shrunk using the mouse wheel.

Decompiler hints
In the pseudocode, the hints are shown for:
1. Local variables and current function arguments: type and location (register or stack).

while (vi2 8& (V12 1= 32 8& w12 != 9 || v13))
{

if (vi2 == 34)
vl3 = lvi13;
CommandLinel = CharNextW(CommandLineW);

vl2 = ABOOL v13; // edi
1

Thttps://hex-rays.com/blog/igors-tip-of-the-week-24-renaming-registers/

https://hex-rays.com/blog/igors-tip-of-the-week-47-hints-in-ida/
https://hex-rays.com/blog/igors-tip-of-the-week-24-renaming-registers/

09Jul2021

& htips://hex-rays.com/blog/igors-tip-of-the-week-47-hints-in-ida/

2. global variables: type.
if (g policyGhangeToken.value)
{

Pr"D‘tec‘tiDnFIs‘tr‘uc‘t Even‘tRegis‘tr‘atiDnTokentt
g policyChangeToken.value = 8164;

H

3. structure or union members: member type and offset.

pid = PKEY_Security_EncryptionOwners.pid;
pprgsz = 0i64d;

pcElem = 0; off=0x10; DWORD

v8 = *(_QWORD *)v7;

4. function calls: prototype and information about arguments and return value.

CommandLinell = CharlextW(CommandLinel);
v12 = *CommandLinel;

LPWSTR (__stdcall *)(LPCWSTR lpsz)
ile (*CommandLinel 8: 8098 rcx LPCWSTR 1psz;
++CommandLinell; RET 9008 rax LPWSTR;

((unsigned int)NPI| TOTAL STKARGS SIZE: 32

5. other expressions and operators: type, signedness, etc.

if (dword_7FF7BAEF26AC > *(_DWORD *)(*(_QWORD *)

{
Initithreadiheader‘(&dword

Debugger hints
During debugging, the hints behave mostly in the same way but with addition of dynamic information:

1. In the disassembly view, hovering on instruction operands shows a hint with their values and, if the value resolves to a valid address,
a fragment of memory at that address.

mov [rax+8], rbx

mov. [rax+1@hl, rsi

o~ [raxl[rax+8]1=[Stack[00@0OE64] : 000BOR33121FF760]
mov [rax: db @Ah

push rbp db 2]

push r14 db]

2. In pseudocode, values of variables are shown in hints.

memset(&Ksgz, @, sizeof(Mss));
CommandLinel = GetCommandLineW();

[struct tagMSG Msg; // [rsp+60h] [rbp+Fh] BYREF
quord_7FF78|{hwnd=0xE161 i64, =BxD3F9I8A38U, W

Configuring hints

The way hints work can be configured via Options > General..., Browser tab. You can set how many lines are displayed by default and
the delay before the hint is shown. The hints can be disabled completely by setting the number of lines to O, or only disabled during
the debugging (showing the hint during debugging may lead to memory reads which can be slow in some situations).

® DA Options X

Disassenmbly Analyss Crossreferences Stngs | BrOwser | Graph | Msc
Hints
Number of nes for dentifier bints [10 |
Delay for identfier hints

[Mouse wheel resizes hint window

[g hints i debugger is active

https://hex-rays.com/blog/igors-tip-of-the-week-47-hints-in-ida/

#48:

16 Jul2021

& https://hex-rays.com/blog/igors-tip-of-the-week-48-searching-in-ida/

We covered how to search for things in choosers (list views)', but what if you need to look for something elsewhere in IDA?

Text search

When searching for textual content, the same shortcut pair (A1t-T to start, Ctrl-T to
continue) works almost anywhere IDA shows text:

« Disassembly (IDA View)

* Hex View

» Decompiler output (Pseudocode)
* Output window

« Structures and Enums windows

» Choosers (list views)

This search matches text anywhere in the current view, for example both the instruc-
tions and comments, if present.

For the main windows, the action is also accessible via the Search > Text... menu.

The notice “(slow!)” refers to the fact that for text searching, IDA has to render all text
lines in the range being searched, which can get quite slow, especially for big
binaries. However, if you need the features like regexp matching, or searching for text
in comments, the wait could be worth it.

Binary search

Available as the shortcut pair A1t-B/Ctrl-B, or Search > Sequence of bytes..., this
feature allows searching for byte sequences (including string literals) and patterns in
the database (including process memory during debugging).

The input line accepts the following inputs:

1. byte sequence (space-delimited): 01 02 03 04

2. byte sequence with wildcard bytes represented by question marks: 68 ?» ? ? 0
will match both 68 C4 1A 48 00 and 68 D8 1A 48 06.

3. one or more numbers in the selected radix (hexadecimal, decimal or octal). The
number will be converted to the minimal necessary number of bytes according to the
current processor endianness. For example, 2 will be converted to E0 69 44 on x86
(a little-endian processor). This feature is useful for finding values in data areas or
embedded in instructions (immediates).

4. Quoted string literals, for example "Error". The string will be converted to bytes
using the encoding specified in the encoding selector. If “All Encodings” is selected,
search will be performed using all configured encodings?.

5. Wide-character string constant (e.g. L"test"). Only UTF-16 is used convert such
strings to raw bytes.

’ Text search (slow!) X
String | .ax w
[Match case
[#] Requiar expression
[1dentifier
[search up
[Eind all eccurrences
o]| conel || rep |
® Binary search X
Enter binary search string:
String | v
[] Match case (@) Hex
[searchup O Dedmal
[Eind all occurrences O octal
String encoding UTF-8 (default 8-bit) i
[oc]| concel || nep |
¥ Binary search X
Enter binary search string:
string [“version] -
[match case ® Hex
[search Up O Dedmal ,
[] Eind all occurrences Q) Octal
Stingencodng |AllDBencodings ™
[oc] conct || vep |

Searching down CASE-INSENSITIVELY for binary patterns:

UTF-8:
UTF-16LE:

windows-1252:

UTF-32LE:

Search completed. Found at

76 €5 72 73 €9 &F €E

76 00 65 00 72 00 73 00 &% aC
Té €5 72 73 €% EF €E

76 00 00 00 €5 00 00 00 72 OC
00431F53.

'https://hex-rays.com/blog/igors-tip-of-the-week-36-working-with-list-views-in-ida/
2https://hex-rays.com/blog/igor-tip-of-the-week-13-string-literals-and-custom-encodings/

https://hex-rays.com/blog/igors-tip-of-the-week-48-searching-in-ida/
https://hex-rays.com/blog/igors-tip-of-the-week-36-working-with-list-views-in-ida/
https://hex-rays.com/blog/igor-tip-of-the-week-13-string-literals-and-custom-encodings/

#48:

16 Jul2021

& https://hex-rays.com/blog/igors-tip-of-the-week-48-searching-in-ida/

Immediate search

As mentioned previously, the same instruction operand can be represented in differ-

. . . . 5 hl diat x
ent ways® in IDA. For example, an instruction like R Search Immediate
This command searches for the specified

test dword ptr [eax], 16@@6h value in the instruction operands

can be also displayed as and data items.

test dword ptr [eax], 65536 Value tosearch | 42| »
oreven] any untyped value

test dword ptr [eax], AW_HIDE [1 search Up

[Find &ll occurrences
So if you do the text search for 10000h, IDA will find the first variation but not the

other two. On x86, you can use binary search for 10000 hex (will be converted to byte | oK | | Cancel | | Help |
sequence 00 00 01), but this will not work for processors which use instruction =

encodings on non-byte boundary, or may give many false positives if unrelated

instructions happen to match the byte sequence. So here’s why the immediate

search is preferable:

1.it only checks instructions with numerical operands or data items, improving search
speed and reducing false positives;

2. it compares the numerical value of the operand, so any change in representation
does not prevent the match, meaning it will find any of the three variations above
Available as the shortcut pair ALt-I/Ctrl-I, or Search > Immediate value...

The value can be entered in any numerical base using the C syntax (decimal, hex,
octal).

Search direction

By default, all searches are performed “down” from the current position, i.e. toward
increasing addresses. You can change it by checking “Search Up” in the individual
search dialogs or beforehand via Search > Search direction. The currently set value | Python | |
is displayed in the menu item as well as IDA’s status bar. au: idie WNw Disk: 46GE

Search direction: up

The “search next” commands and shortcuts (Ctrl-T, Ctrl-B, Ctrl-I) also use this
setting.
Find all occurrences

This checkbox allows you to get results of the search over whole database or view in a list which you can then inspect at your leisure
instead of looking at every search hit one by one.

’ Binary search e O Occurrences of binary: 5588 EC
Address Functien Instruction
e 30
Enter binary search string: 1ext:00402600 y push ebp
String | 5588 ECl - text:004026A0 sub_4026A0 push ebp
text:004026E0 sub_4026E0 push ebp
D Match case @ Hex text:00402720 sub_402720 push ebp
- - text:00402420 sub_402420 push ebp
[search up O Decmal 1extD0403C20 sub_403C20 push ebp
E Find all occurrences O octal text:00403DD0 sub_403DD0 push ebp
text:00403FDO sub_403FD0 push ebp
ST |ﬁ| DB » o | text:00404030 sub_404030 push ebp
- text:004040A0 sub_4040A0 push ebp
I oK | | Cancel | | Help | text:00404100 sub_404100 push ebp
text:00404200 sub_404200 push ebp
text:004042E0 sub_4042E0 push ebp
text:004043F0 sub_4043F0 push ebp
text:00404470 sub_404470 push ebp
text:004044E0 sub_4044E0 push ebp

3https://hex-rays.com/blog/igors-tip-of-the-week-46-disassembly-operand-representation/

https://hex-rays.com/blog/igors-tip-of-the-week-48-searching-in-ida/
https://hex-rays.com/blog/igors-tip-of-the-week-46-disassembly-operand-representation/

#48:

16 Jul 2021
& https://hex-rays.com/blog/igors-tip-of-the-week-48-searching-in-ida/

Picking the search type
This is not a definitive guide but here are some suggestions:

1. text (e.g. prompt or error message) displayed by the program: binary search for the quoted substring (NB: this will not work if the
string is not hardcoded but is in an external file or resource stream not loaded by IDA).

2. magic constant or error code: immediate search (in some cases binary search for the value can work too).

3. an address to which there are no apparent cross references: binary search for the address value (will only succeed if the reference
actually uses the value directly without calculating it in some way).

4. specific instruction opcode pattern: binary search for byte sequence (possibly with wildcard bytes).

i5. nstruction not having a fixed encoding: text search for mnemonic and/or operands (possibly as regexp).

More info: Search submenu®

“https://hex-rays.com/products/ida/support/idadoc/568.shtml

https://hex-rays.com/blog/igors-tip-of-the-week-48-searching-in-ida/
https://hex-rays.com/products/ida/support/idadoc/568.shtml

23 Jul 2021
& https://nex-rays.com/blog/igors-tip-of-the-week-49-navigation-band/

Navigation band, also sometimes called the navigator, or navbar, is the Ul element shown by default at the top of IDA’'s window,
in the toolbar area.

File Edit Jump Search View Debugger Lumins Options Windows Help

EH e e 8) o DG At F-F i X > 0O - B @

l:l
<
Library function Bl Regular functon B Instruction || Data [Unexplored ~ External symbal [Lumina function

Funcons 0O & X maview-s B [Hexview1] Bl structures [[Elenums [& imports [(2] Exports [

Function name A “ | _text:@008000101CE704C STR Do, [sfn

It shows the global overview of the program being analyzed and allows to see at a quick glance how well has the program been
analyzed and what areas may need attention.

Colors
The colors are explained in the legend; the default color scheme uses the following colors:

Cyan/turquose: Library functions, i.e. functions which have been recognized by a FLIRT signature. Usually such functions cone
from the compiler or third party libraries and not the code written by the programmer, so they can often be ignored as a known
quantity;

[Blue: Regular functions, i.e. functions not recognized by FLIRT or Lumina. These could contain the custom functionality, specific
to the program;

[Maroon/brown: instructions(code) not belonging to any functions. These could appear when IDA did not detect or misdetected
function boundaries, or hint at code obfuscation being employed which could prevent proper function creation. It could also be
data incorrectly being treated as code.

Gray: data. This color is used for all defined data items (string literals, arrays, individual variables).

[Olive: unexplored bytes, i.e. areas not yet converted to either code or data.

Magenta: used to mark functions or data imported from other modules (including wrapper thunks for imported functions).

[Lime green: functions recognized by Lumina. They could be either library functions, or custom functions seen previously in other
binaries and uploaded by users to the public Lumina server.

Colors can be changed when changing the color scheme, or individually in Options > Colors..., Navigation band.

Indicators

In addition to the colors, there may be additional indicators on the navigation band. : ‘

The yellow arrow is the current cursor position in the disassembly (IDA View), while ’

the small orange triangle on the opposite side shows the current autoanalysis

location (it is only visible while autoanalysis is in progress). i) ubrary function [l Regular function [l Inst

Additional display

The combobox (dropdown) at the right of the navigation band allows you to add b

some additional markers to it. For example, you can show: -
. . ‘ Entry points

« Entry points (exported functions); Binary pattern. ..

« Binary or text pattern search results’; Text pattern. ..

« immediate search’ results; Cross references to...

« cross references’ to a specific address; e Im_rnediate value. ..

« bookmarked positions; Void operands

. etc. Marked positions

Problems
The markers show up as red circles and can be clicked to navigate.

https://hex-rays.com/blog/igors-tip-of-the-week-48-searching-in-ida/

https://hex-rays.com/blog/igors-tip-of-the-week-49-navigation-band/
https://hex-rays.com/blog/igors-tip-of-the-week-48-searching-in-ida/

23Jul2021
& https:/hex-rays.com/blog/igors-tip-of-the-week-49-navigation-band/

Configuration

The control can be hidden or shown via View > Toolbars > Navigator, or the same item in the toolbar’s context menu.

It can be placed at any of the four sides of IDA's window by using the drag handle.

In the horizontal position, you can show or hide the legend and the additional display combobox from the context menu.

. Mavigator

File

Jump

Search

i Hide/Unhide

Navigation and zooming

By default, the navigation band shows the complete program, however you can zoom
in to see a more detailed view of a specific part. Zooming can be done by Ctrl +
mouse wheel, or from the context menu. The numerical options specify how many
bytes of the program are represented by one pixel on the band.

Once zoomed in, the visible part can be scrolled with the mouse wheel or by clicking
the arrow buttons at either end of the band. You can click into any part of the band to
navigate there in the disassembly view.

s |
FL »
‘| ubrary functior Il Reguar functior Il nstructior [pat | 7, mina functior
Ao s x| Bo.B Br.o @ Zoom out o @
ionname A ot inComtaxtt Refresh -
inkContextE ;
e F[m:ygf | 1 |20029188 - 0x1
= A:;L’:ﬁ’:‘: B Additional display visible
L Zem % Fitwhokeprogrem
Zoom in 1 bytes
Zoom out 4 bytes
Refresh 16 bytes
54 bytes
Legend visible 256 bytes
Additional display visible 1024 bytes
Font... 4096 bytes

st* int, char const™ | ‘ ‘ 16384 bytes

https://hex-rays.com/blog/igors-tip-of-the-week-49-navigation-band/

30Jul2021

& https://nex-rays.com/blog/igors-tip-of-the-week-50-execution-flow-arrows/

\[ext:0000u4aC Lloc 440 Y
N LDRH R1, [R2,#2]
ADDS R2, R2, R1

Although nowadays most IDA users probably use the graph view, the text view can
still be useful in certain situations. In case you haven't noticed, it has a Ul element
which can help you visualize code flow even without the full graph and even outside
of functions (the graph view is available only for functions). This element is shown on
the left of the disassembly listing:

100000450 loc_450 ;cc
LDRH R1, [R2]
cmp R1, RO
MOV R1, #OxFFFF
BNE loc_44C

; End of function sub_330

B loc_d68

The arrows represent code flow (cross-references) and the following types may be
present: . Ltext:68000452 cmp R1, RO
- |.text:00000458 BNE loc_aac
« Solid lines represent unconditional jumps/branches, dashed lines - conditional
ones;
« Thick arrows are used for jumps back to lower addresses (they indicate potential
loops);
* The current arrow is highlighted in black;

+ Red arrows are used when target and/or destination lies outside of the function
boundaries

In addition to arrows, the blue dots indicate potential breakpoint location, so the
breakpoint can be added by clicking on the dot, which will highlight the whole line red
to indicate an active breakpoint.

https://hex-rays.com/blog/igors-tip-of-the-week-50-execution-flow-arrows/

06 Aug 2021

& https://nex-rays.com/blog/igors-tip-of-the-week-51-custom-calling-conventions/

The Hex-Rays decompiler was originally created to deal with code produced by standard C compilers. In that world, everything
is (mostly) nice and orderly: the calling conventions' are known and standardized and the arguments are passed to function
according to the ABI~

However, the real life is not that simple: even in code coming from standard compilers there may be helper functions accepting
arguments in non-standard locations, code written in assembly, or whole program optimization® causing compiler to use
custom calling conventions for often-used functions. And code created with non-C/C++ compilers may use completely differ-
ent calling conventions (a notable example is Go).

Thus a need arose to specify custom calling conventions so that the decompiler can provide readable output when they're
used. For this, ability to specify custom calling conventions has been added to IDA and decompiler.

Text input dialog boxes (e.g. Enter Comment or Edit Local

The most commonly used custom calling convention is specified using the keyword __usercall. The basic syntax is as follows:
{return type} _ usercall funcname@<return argloc>({type} argl, {type} arg2@<argloc>, ...);

where arglocis one of the following:

* a processor register name, e.g. eax, ebx, esi etc. In some cases flag registers (zf, sf, cf etc.) may be accepted too.
« aregister pair delimited with a colon, e.g. <edx:eax>.

The register size should match the argument or return type (if the function returns void, return argloc must be omitted). Arguments
without location specifiers are assumed to be passed on stack according to usual rules.
Scattered argument locations

In complicated situations a large argument (such as a structure instance) may be passed in multiple registers and/or stack slots. In
such case the following descriptors can be used:

« a partial register location: argoff:register~regoff.size.

« a partial stack location: argoff: ~stkoff.size.

« a list of partial register and/or stack locations covering the whole argument delimited with a comma.
Where:

« argoff — offset within the argument

« stkoff - offset in the stack frame (the first stack argument is at offset 0)

* register - register name used to pass part of the argument

« regoff — offset within the register

« size — number of bytes for this portion of the argument

regoff and size can be omitted if there is no ambiguity (i.e. whole register is used).
For example, a 12-byte structure passed in RDI and RSI could be specified like this:

void __usercall myfunc(struc_1 s@<@:rdi, 8:rsi.4>);

Userpurge

The __userpurge calling convention is equivalent to __usercall except it is assumed that the callee adjusts the stack to account for
arguments passed on stack (this is similar to how __cdec1 differs from __ stdcall on x86).

Thttps://docs.microsoft.com/en-us/cpp/cpp/calling-conventions
2https://enwikipedia.org/wiki/Application_binary_interface
3 https://docs.microsoft.com/en-us/cpp/build/reference/gl-whole-program-optimization

https://hex-rays.com/blog/igors-tip-of-the-week-51-custom-calling-conventions/
https://docs.microsoft.com/en-us/cpp/cpp/calling-conventions
https://en.wikipedia.org/wiki/Application_binary_interface
https://docs.microsoft.com/en-us/cpp/build/reference/gl-whole-program-optimization

06 Aug 2021

& https://nex-rays.com/blog/igors-tip-of-the-week-51-custom-calling-conventions/

Spoiled registers

The compiler or OS ABI also usually specifies which registers are caller-saved, i.e. may be spoiled (or clobbered) by a function call. In
general, any register which can be used for argument passing or return value is considered potentially spoiled because the called
function could in turn call other functions. For example, on x86, EAX, ECX, and EDX are by default considered spoiled and their values
after the call are considered undefined by the decompiler. If this is not the case, you can help the decompiler by using the
__spoils<{reglist}> specifier. For example, if the function does not clobber any registers, you can use the following prototype:
void _ spoils<> func();

If a custom memcpy implementation uses esi and edi without saving and restoring them, you can add them to the spoiled list:

void* _ spoils<esi, edi> memcpy(void*, void*, int);

The __spoils attribute can also be combined with __usercall:

int __usercall _ spoils<> g@<esi>();

See also: Set function/item type® and Scattered argument locations® in IDA Help.

“https://hex-rays.com/products/ida/support/idadoc/1361.shtml
5https://hex-rays.com/products/ida/support/idadoc/1492.shtml

https://hex-rays.com/blog/igors-tip-of-the-week-51-custom-calling-conventions/
https://hex-rays.com/products/ida/support/idadoc/1361.shtml
https://hex-rays.com/products/ida/support/idadoc/1492.shtml

13 Aug 2021

& https:/hex-rays.com/blog/igors-tip-of-the-week-52-special-attributes/

IDA uses mostly standard C (and basic C++) syntax, but it also supports some extensions, in particular to represent low-level
details which are not necessary for “standard” C code but are helpful for real-life binary code analysis. We've already covered
custom types'and calling conventions?, but there are more extensions you may use or encounter.

Function attributes

The following attributes may be used in function prototypes:

« __pure:a pure function (always returns the same result for same inputs and does not affect memory in a visible way);

« __noreturn: function does not return to the caller;

« _usercall or __userpurge: user-defined calling convention (see previous post?);

« _spoils: explicit spoiled registers specification (see previous post?);

ev__attribute__ ((format(printf,nl,n2))):variadic function with a printf-style format string in argument at position n1 and variad-

Argument attributes

These attributes can often appear when IDA lowers a user-provided prototype to represent the actual low-level details of argument
passing.

» __hidden: the argument was not present in source code (for example the implicit this pointer in C++ class methods).
« _return_ptr: hidden argument used for the return value (implies __hidden);

e struct_ptr: argument was originally a structure value;

« __array_ptr: argument was originally an array (arrays ;

« __unused: unused function argument.

For example, if s1is a structure of 16 bytes, then the following prototype:

struct s1 func();

will be lowered by IDA to:

struct s1 *__cdecl func(struct sl *__return_ptr _ struct_ptr retstr);

Other attributes

 __ cppobj: used for structures representing C++ objects; some layout details change if this attribute is used (e.g. treatment of empty
structs or reuse of end-of-struct padding in inheritance);

e ptr32, ptre4: explicitly-sized pointers;

 _ shifted: a pointer which points not at the start of an object but some location inside or before it.

See also: Set function/item type® in IDA Help.

Thttps://hex-rays.com/blog/igors-tip-of-the-week-45-decompiler-types/
2https://hex-rays.com/blog/igors-tip-of-the-week-51-custom-calling-conventions/
3 https://hex-rays.com/blog/igors-tip-of-the-week-51-custom-calling-conventions/
“https://hex-rays.com/products/ida/support/idadoc/1361.shtml

https://hex-rays.com/blog/igors-tip-of-the-week-52-special-attributes/
https://hex-rays.com/blog/igors-tip-of-the-week-45-decompiler-types/
https://hex-rays.com/blog/igors-tip-of-the-week-51-custom-calling-conventions/
https://hex-rays.com/blog/igors-tip-of-the-week-51-custom-calling-conventions/
https://hex-rays.com/products/ida/support/idadoc/1361.shtml

