
Hidden: hidden gems, not widely known but useful functionality
#06: IDA Release notes
#19: Function calls
#21: Calculator and expression evaluation feature in IDA
#24: Renaming registers
#39: Export Data
#41: Binary file loader
#44: Hex dump loader

Decompiler: related to the Hex-Rays decompiler
#18: Decompiler and global cross-references
#27: Fixing the stack pointer
#40: Decompiler basics
#42: Renaming and retyping in the decompiler
#43: Annotating the decompiler output
#45: Decompiler types

Automation: automating repetitive tasks
#07: IDA command-line options cheatsheet
#08: Batch mode under the hood
#32: Running scripts

Customization: customizing IDA UI to better suit your workflow
#02: IDA UI actions and where to find them
#22: IDA desktop layouts
#25: Disassembly options
#26: Disassembly options 2
#29: Color up your IDA
#33: IDA’s user directory (IDAUSR)

Usage: basic and advanced usage of IDA features
#01: Lesser-known keyboard shortcuts in IDA
#03: Selection in IDA
#04: More selection!
#05: Highlight
#09: Reanalysis
#13: String literals and custom encodings
#14: Comments in IDA
#15: Comments in structures and enums
#28: Functions list
#30: Quick views
#31: Hiding and Collapsing
#34: Dummy names
#35: Demangled names
#36: Working with list views in IDA
#37: Patching
#46: Disassembly operand representation
#47: Hints in IDA

Navigation: moving around the database
#16: Cross-references
#17: Cross-references 2
#20: Going places
#23: Graph view
#38: Hex view
#48: Searching in IDA
#49: Navigation band
#50: Execution flow arrows

Types: working with types
#10: Working with arrays
#11: Quickly creating structures
#12: Creating structures with known size
#51: Custom calling conventions
#52: Special type attributes

from 07/08/2020 to 13/08/2021

__text:FFFFFF8000039F88 STP X22, X21, [SP,#-0x10+var_20]!
__text:FFFFFF8000039F8C STP X20, X19, [SP,#0x20+var_10]
__text:FFFFFF8000039F90 STP X29, X30, [SP,#0x20+var_s0]
__text:FFFFFF8000039F94 ADD X29, SP, #0x20
__text:FFFFFF8000039F98 MOV X19, X0
__text:FFFFFF8000039F9C BL sub_FFFFFF80000415E4
__text:FFFFFF8000039FA0 B.HI loc_FFFFFF800003A01C
__text:FFFFFF8000039FA4 MOV W20, #0
__text:FFFFFF8000039FA8 ADR X9, byte_FFFFFF8000048593
__text:FFFFFF8000039FAC NOP
__text:FFFFFF8000039FB0 ADR X10, loc_FFFFFF8000039FC0
__text:FFFFFF8000039FB4 LDRB W11, [X9,X8]
__text:FFFFFF8000039FB8 ADD X10, X10, X11,LSL#2
__text:FFFFFF8000039FBC BR X10
__text:FFFFFF8000039F88 STP X22, X21, [SP,#-0x10+var_20]!
__text:FFFFFF8000039F8C STP X20, X19, [SP,#0x20+var_10]
__text:FFFFFF8000039F90 STP X29, X30, [SP,#0x20+var_s0]
__text:FFFFFF8000039F94 ADD X29, SP, #0x20
__text:FFFFFF8000039F98 MOV X19, X0
__text:FFFFFF8000039F9C BL sub_FFFFFF80000415E4
__text:FFFFFF8000039FA0 B.HI loc_FFFFFF800003A01C
__text:FFFFFF8000039FA4 MOV W20, #0
__text:FFFFFF8000039FA8 ADR X9, byte_FFFFFF8000048593
__text:FFFFFF8000039FAC NOP
__text:FFFFFF8000039FB0 ADR X10, loc_FFFFFF8000039FC0
__text:FFFFFF8000039FB4 LDRB W11, [X9,X8]
__text:FFFFFF8000039FB8 ADD X10, X10, X11,LSL#2

01010000110010111100110110111100011
10001010110100101101110011001111000
11101011001111000010010100100010100
11011100101101010110111101011100001
10101011000001111000101000111111001
01101000101101100111001001011000100
01100011001000010111100001110101000
11100011000101110100011110111010010
10110100010111011110110111010001001
00000001000110011100100011100001000
10001001101011111000000011000100101
11100001110101010110010000000010111
01000010101101110111100010001111000
10010101000001110101110111000011101

f885 eea4 1d22 df51 bdd3 a1f7 fbdd
3510 25b4 e463 3b32 b77a e823 4002
211c 7729 c632 782d 7c01 a5f4 d25f
4cfc 007a fab3 c232 8cf1 39a1 386f
652b 05af 1a7b adc7 a497 b0ee 20d8
ae9e bc22 79b5 df2f 9d2b 5e0c 24cb
f885 eea4 1d22 df51 bdd3 a1f7 fbdd
3510 25b4 e463 3b32 b77a e823 4002
211c 7729 c632 782d 7c01 a5f4 d25f
4cfc 007a fab3 c232 8cf1 39a1 386f

f885 eea4 1d22 df51 bdd3 a1f7 fbdd
3510 25b4 e463 3b32 b77a e823 4002
211c 7729 c632 782d 7c01 a5f4 d25f
4cfc 007a fab3 c232 8cf1 39a1 386f
652b 05af 1a7b adc7 a497 b0ee 20d8
ae9e bc22 79b5 df2f 9d2b 5e0c 24cb
f885 eea4 1d22 df51 bdd3 a1f7 fbdd
3510 25b4 e463 3b32 b77a e823 4002
211c 7729 c632 782d 7c01 a5f4 d25f
4cfc 007a fab3 c232 8cf1 39a1 386f bdd3 a1f7 fbdd 3510 25b4 e463 3b32

b77a e823 4002 211c 7729 c632 782d
7c01 a5f4 d25f 4cfc 007a fab3 c232
8cf1 39a1 386f 652b 05af 1a7b adc7
a497 b0ee 20d8 ae9e bc22 79b5 df2f
9d2b 5e0c 24cb f885 eea4 1d22 df51
bdd3 a1f7 fbdd 3510 25b4 e463 3b32
b77a e823 4002 211c 7729 c632 782d
7c01 a5f4 d25f 4cfc 007a fab3 c232
8cf1 39a1 386f 652b 05af 1a7b adc7

f885 eea4 1d22 df51 bdd3
a1f7 fbdd 3510 25b4 e463
3b32 b77a e823 4002 211c
7729 c632 782d 7c01 a5f4
d25f 4cfc 007a fab3 c232
8cf1 39a1 386f 652b 05af
1a7b adc7 a497 b0ee 20d8

01010000110010111100110110111100011
10001010110100101101110011001111000
11101011001111000010010100100010100
11011100101101010110111101011100001
10101011000001111000101000111111001
01101000101101100111001001011000100
01100011001000010111100001110101000
11100011000101110100011110111010010
10110100010111011110110111010001001
00000001000110011100100011100001000
10001001101011111000000011000100101
11100001110101010110010000000010111
01000010101101110111100010001111000
10010101000001110101110111000011101

01010000110010111100110110111100011
10001010110100101101110011001111000
11101011001111000010010100100010100
11011100101101010110111101011100001
10101011000001111000101000111111001
01101000101101100111001001011000100
01100011001000010111100001110101000
11100011000101110100011110111010010
10110100010111011110110111010001001
00000001000110011100100011100001000
10001001101011111000000011000100101
11100001110101010110010000000010111
01000010101101110111100010001111000
10010101000001110101110111000011101

01010000110010111100110110111100011
10001010110100101101110011001111000
11101011001111000010010100100010100
11011100101101010110111101011100001
10101011000001111000101000111111001
01101000101101100111001001011000100
01100011001000010111100001110101000
11100011000101110100011110111010010
10110100010111011110110111010001001
00000001000110011100100011100001000
10001001101011111000000011000100101
11100001110101010110010000000010111
01000010101101110111100010001111000
10010101000001110101110111000011101

01010000110010111100110
11011110001110001010110
10010110111001100111100
01110101100111100001001
01001000101001101110010
11010101101111010111000
01101010110000011110001
01000111111001011010001
01101100111001001011000

__text:FFFFFF8000039F88 STP X22, X21, [SP,#-0x10+var_20]!
__text:FFFFFF8000039F8C STP X20, X19, [SP,#0x20+var_10]
__text:FFFFFF8000039F90 STP X29, X30, [SP,#0x20+var_s0]
__text:FFFFFF8000039F94 ADD X29, SP, #0x20
__text:FFFFFF8000039F98 MOV X19, X0
__text:FFFFFF8000039F9C BL sub_FFFFFF80000415E4
__text:FFFFFF8000039FA0 B.HI loc_FFFFFF800003A01C
__text:FFFFFF8000039FA4 MOV W20, #0
__text:FFFFFF8000039FA8 ADR X9, byte_FFFFFF8000048593
__text:FFFFFF8000039FAC NOP
__text:FFFFFF8000039FB0 ADR X10, loc_FFFFFF8000039FC0
__text:FFFFFF8000039FB4 LDRB W11, [X9,X8]
__text:FFFFFF8000039FB8 ADD X10, X10, X11,LSL#2
__text:FFFFFF8000039FBC BR X10
__text:FFFFFF8000039F88 STP X22, X21, [SP,#-0x10+var_20]!
__text:FFFFFF8000039F8C STP X20, X19, [SP,#0x20+var_10]
__text:FFFFFF8000039F90 STP X29, X30, [SP,#0x20+var_s0]
__text:FFFFFF8000039F94 ADD X29, SP, #0x20
__text:FFFFFF8000039F98 MOV X19, X0
__text:FFFFFF8000039F9C BL sub_FFFFFF80000415E4
__text:FFFFFF8000039FA0 B.HI loc_FFFFFF800003A01C
__text:FFFFFF8000039FA4 MOV W20, #0
__text:FFFFFF8000039FA8 ADR X9, byte_FFFFFF8000048593
__text:FFFFFF8000039FAC NOP
__text:FFFFFF8000039FB0 ADR X10, loc_FFFFFF8000039FC0
__text:FFFFFF8000039FB4 LDRB W11, [X9,X8]
__text:FFFFFF8000039FB8 ADD X10, X10, X11,LSL#2

__text:FFFFFF8000039F88 STP X22, X21, [SP,#-0x10+var_20]!
__text:FFFFFF8000039F8C STP X20, X19, [SP,#0x20+var_10]
__text:FFFFFF8000039F90 STP X29, X30, [SP,#0x20+var_s0]
__text:FFFFFF8000039F94 ADD X29, SP, #0x20
__text:FFFFFF8000039F98 MOV X19, X0
__text:FFFFFF8000039F9C BL sub_FFFFFF80000415E4
__text:FFFFFF8000039FA0 B.HI loc_FFFFFF800003A01C
__text:FFFFFF8000039FA4 MOV W20, #0
__text:FFFFFF8000039FA8 ADR X9, byte_FFFFFF8000048593
__text:FFFFFF8000039FAC NOP
__text:FFFFFF8000039FB0 ADR X10, loc_FFFFFF8000039FC0
__text:FFFFFF8000039FB4 LDRB W11, [X9,X8]
__text:FFFFFF8000039FB8 ADD X10, X10, X11,LSL#2
__text:FFFFFF8000039FBC BR X10
__text:FFFFFF8000039F88 STP X22, X21, [SP,#-0x10+var_20]!
__text:FFFFFF8000039F8C STP X20, X19, [SP,#0x20+var_10]
__text:FFFFFF8000039F90 STP X29, X30, [SP,#0x20+var_s0]
__text:FFFFFF8000039F94 ADD X29, SP, #0x20
__text:FFFFFF8000039F98 MOV X19, X0
__text:FFFFFF8000039F9C BL sub_FFFFFF80000415E4
__text:FFFFFF8000039FA0 B.HI loc_FFFFFF800003A01C
__text:FFFFFF8000039FA4 MOV W20, #0
__text:FFFFFF8000039FA8 ADR X9, byte_FFFFFF8000048593
__text:FFFFFF8000039FAC NOP
__text:FFFFFF8000039FB0 ADR X10, loc_FFFFFF8000039FC0
__text:FFFFFF8000039FB4 LDRB W11, [X9,X8]
__text:FFFFFF8000039FB8 ADD X10, X10, X11,LSL#2

__text:FFFFFF8000039F88 STP X22, X21, [SP,#-0x10+var_20]!
__text:FFFFFF8000039F8C STP X20, X19, [SP,#0x20+var_10]
__text:FFFFFF8000039F90 STP X29, X30, [SP,#0x20+var_s0]
__text:FFFFFF8000039F94 ADD X29, SP, #0x20
__text:FFFFFF8000039F98 MOV X19, X0
__text:FFFFFF8000039F9C BL sub_FFFFFF80000415E4
__text:FFFFFF8000039FA0 B.HI loc_FFFFFF800003A01C
__text:FFFFFF8000039FA4 MOV W20, #0
__text:FFFFFF8000039FA8 ADR X9, byte_FFFFFF8000048593
__text:FFFFFF8000039FAC NOP
__text:FFFFFF8000039FB0 ADR X10, loc_FFFFFF8000039FC0
__text:FFFFFF8000039FB4 LDRB W11, [X9,X8]
__text:FFFFFF8000039FB8 ADD X10, X10, X11,LSL#2
__text:FFFFFF8000039FBC BR X10
__text:FFFFFF8000039F88 STP X22, X21, [SP,#-0x10+var_20]!
__text:FFFFFF8000039F8C STP X20, X19, [SP,#0x20+var_10]
__text:FFFFFF8000039F90 STP X29, X30, [SP,#0x20+var_s0]
__text:FFFFFF8000039F94 ADD X29, SP, #0x20
__text:FFFFFF8000039F98 MOV X19, X0
__text:FFFFFF8000039F9C BL sub_FFFFFF80000415E4
__text:FFFFFF8000039FA0 B.HI loc_FFFFFF800003A01C
__text:FFFFFF8000039FA4 MOV W20, #0
__text:FFFFFF8000039FA8 ADR X9, byte_FFFFFF8000048593
__text:FFFFFF8000039FAC NOP
__text:FFFFFF8000039FB0 ADR X10, loc_FFFFFF8000039FC0
__text:FFFFFF8000039FB4 LDRB W11, [X9,X8]
__text:FFFFFF8000039FB8 ADD X10, X10, X11,LSL#2

__text:FFFFFF8000039F88 STP X22, X21, [SP,#-0x10+var_20]!
__text:FFFFFF8000039F8C STP X20, X19, [SP,#0x20+var_10]
__text:FFFFFF8000039F90 STP X29, X30, [SP,#0x20+var_s0]
__text:FFFFFF8000039F94 ADD X29, SP, #0x20
__text:FFFFFF8000039F98 MOV X19, X0
__text:FFFFFF8000039F9C BL sub_FFFFFF80000415E4
__text:FFFFFF8000039FA0 B.HI loc_FFFFFF800003A01C
__text:FFFFFF8000039FA4 MOV W20, #0
__text:FFFFFF8000039FA8 ADR X9, byte_FFFFFF8000048593

__text:FFFFFF8000039F88 STP X22, X21, [SP,#-0x10+var_20]!
__text:FFFFFF8000039F8C STP X20, X19, [SP,#0x20+var_10]
__text:FFFFFF8000039F90 STP X29, X30, [SP,#0x20+var_s0]
__text:FFFFFF8000039F94 ADD X29, SP, #0x20
__text:FFFFFF8000039F98 MOV X19, X0
__text:FFFFFF8000039F9C BL sub_FFFFFF80000415E4
__text:FFFFFF8000039FA0 B.HI loc_FFFFFF800003A01C
__text:FFFFFF8000039FA4 MOV W20, #0
__text:FFFFFF8000039FA8 ADR X9, byte_FFFFFF8000048593

Today, Hex-Rays is excited to launch a special blog series where Igor, one of the experts behind IDA, will provide useful
tips and functionalities of IDA that are not always known or less obvious to its users.

The first episode of this blog series covers the most useful keyboard shortcuts that will certainly speed up your IDA
experience.

So, we hope you enjoy this first post and tune in every Friday to read Igor’s tip of the week!

Posted the 7th August 2020 by Igor Skochinsky

HEX-RAYS BLOG
a blog series on

Igor’s tip of the week
season one

CHECK ALL ARTICLES : WWW.HEX-RAYS.COM/BLOG/

__text:FFFFFF8000039F88 STP X22, X21, [SP,#-0x10+var_20]!
__text:FFFFFF8000039F8C STP X20, X19, [SP,#0x20+var_10]
__text:FFFFFF8000039F90 STP X29, X30, [SP,#0x20+var_s0]
__text:FFFFFF8000039F94 ADD X29, SP, #0x20
__text:FFFFFF8000039F98 MOV X19, X0
__text:FFFFFF8000039F9C BL sub_FFFFFF80000415E4
__text:FFFFFF8000039FA0 B.HI loc_FFFFFF800003A01C
__text:FFFFFF8000039FA4 MOV W20, #0
__text:FFFFFF8000039FA8 ADR X9, byte_FFFFFF8000048593

#01: Lesser-known keyboard shortcuts in IDA

https://hex-rays.com/blog/igor-tip-of-the-week-01-lesser-known-keyboard-shortcuts-in-ida/

This week’s tip will be about using the keyboard in IDA. Nowadays, while most actions can be carried out using the mouse, it
can still be much faster and more e�cient to use the keyboard. IDA first started as a DOS program, long before GUI and
mouse became common, which is why you can still do most of the work without touching the mouse! While most of common
shortcuts can be found in the cheat sheet (HTML1, PDF2), there remains some which are less obvious, but incredibly useful!

Text input dialog boxes (e.g. Enter Comment or Edit Local Type)

Quick menu navigation

You can use Ctrl-Enter to confirm (OK) or Esc to dismiss (Cancel) the dialog.
This works regardless of the button arrangement (which can di�er depending on the
platform and/or theme used).

If you hold down Alt on Windows (or enable a system option), you should see under-
lines under the menu item names.

You can press the underlined letter (also known as “accelerator”) while holding down
Alt to open that menu, and then press the underlined letter of the specific menu item
to trigger it. The second step will work even if you release Alt . For example, to
execute “Search > Not function” (which has no default hotkey), you can press Alt-H,
F . Although there may be no underlines on Linux or Mac, the same key sequence
should still work. If you don’t have access to a Windows IDA and don’t want to brute-
force accelerator keys manually, you can check the cfg/idagui.cfg file which
describes IDA’s default menu layout and all assigned accelerators (prefixed with &).

Dialog box navigation

In addition to OK/Cancel buttons, many of IDA’s dialog boxes have checkboxes, radio
buttons or edit fields. You can use the standard Tab key to navigate between them
and Space bar to toggle, however, similarly to the menus, most dialog box controls in
IDA have accelerator shortcuts. You can use Alt on Windows to reveal them but,
unlike menus, they work even without Alt. For example. to quickly exit IDA discarding
any changes made since opening the database, use this key sequence:

NOTE: a few dialogs are excluded from this feature, for example the Options-General… dialog, also Script
Command (Shift-F2) or other dialogs with a text edit box. In such dialogs you have to hold down Alt to use
accelerators.

 Alt-X (or Alt-F4) to show the “Save database” dialog
 D to toggle the “DON’T SAVE the database” checkbox
 Enter or Alt-K (or K) to confirm (OK)

 Alt-X (or Alt-F4) to show the “Save database” dialog
 D to toggle the “DON’T SAVE the database” checkbox
 Enter or Alt-K (or K) to confirm (OK)

Igor’s tip of the week - season 01

07 Aug 2020

1 https://hex-rays.com/wp-content/static/products/ida/idapro_cheatsheet.html
2 https://hex-rays.com/wp-content/static/products/ida/support/freefiles/IDA_Pro_Shortcuts.pdf

https://hex-rays.com/blog/igor-tip-of-the-week-01-lesser-known-keyboard-shortcuts-in-ida/
https://hex-rays.com/wp-content/static/products/ida/idapro_cheatsheet.html
https://hex-rays.com/wp-content/static/products/ida/support/freefiles/IDA_Pro_Shortcuts.pdf

#02: IDA UI actions and where to find them

https://hex-rays.com/blog/igor-tip-of-the-week-02-ida-ui-actions-and-where-to-find-them/

In the previous post we described how to quickly invoke some of IDA’s commands using the keyboard. However, sometimes
you may need to perform a specific action many times and if it doesn’t have a default hotkey assigned it can be tedious to click
through the menus. Even the accelerator keys help only so much. Or it may be di�cult to discover or find a specific action in
the first place (some actions do not even have menu items). There are two IDA features that would help here:

The shortcut editor

The command palette

The editor is invoked via Options > Shortcuts… and allows you to see, add, and
modify shortcuts for almost all UI actions available in IDA.

The dialog is non-modal and shows which actions are available for the current view
(currently disabled ones are struck out) so you can try clicking around IDA and see
how the set of available actions changes depending on the context.

To assign a shortcut, select the action in the list then type the key combination in the
“Shortcut:” field (on Windows you can also click the “Record” button and press the
desired shortcut), then click “Set” to save the new shortcut for this and all future IDA
sessions. Use “Restore” to restore just this action, or “Reset” to reset all actions to
the default state (as described in idagui.cfg).

Command palette (default shortcut is Ctrl-Shift-P) is similar to the Shortcut editor
in that it shows the list of all IDA actions but instead of changing shortcuts you can
simply invoke the action.

The filter box at the bottom filters the actions that contain the typed text with fuzzy
matching and is focused when the palette is opened so you can just type the approx-
imate name of an action and press Enter to invoke the best match.

Igor’s tip of the week - season 01

14 Aug 2020

https://hex-rays.com/blog/igor-tip-of-the-week-02-ida-ui-actions-and-where-to-find-them/

#03: Selection in IDA

https://hex-rays.com/blog/igor-tip-of-the-week-03-selection-in-ida/

This week’s post is about selecting items in IDA and what you can do with the selection.

As a small change from the previous posts with mainly keyboard usage, we’ll also use the mouse this time!

Actions and what they are applied to

Selecting in IDA

When an action is performed in IDA, by default it is applied only to the item under the cursor or to the current address (depending on
the action). However, sometimes you might want to perform the action on more items or to an address range, for example to:

The simplest ways to select something in IDA are the same as in any text editor:

• click and drag with the mouse (you can also scroll with the wheel while keeping the left button pressed);
• hold down Shift and use the cursor navigation keys (PgUp PgDn Home End etc.).

• undefine a range of instructions;
• convert a range of undefined bytes to a string literal if IDA can’t do it automatically (e.g. string is not null-terminated);
• create a function from a range of instructions with some data in the middle (e.g. when you get the dreaded “The function has unde
 fined instruction/data at the specified address” error);
• export disassembly or decompilation of only selected functions instead of the whole file;
• copy to clipboard a selected fragment of the disassembly.

Igor’s tip of the week - season 01

21 Aug 2020

Using the anchor selection

1. Move to the start of the intended selection and select Edit > Begin selection (or use the Alt-L shortcut).
2. Navigate to the other end of the selection using any means (cursor keys, Jump actions, Functions window, Navigation bar etc.).
3. Perform the action (via context menu, keyboard shortcut, or global menu). It will be applied to the selection from the anchor point to
 the current position.

Using the anchor selection

Some of the actions that use selection:

• Commands in the File > Produce file submenu (create .ASM, .LST, HTML or .C file)
• Edit > Export data (Shift-E)

Some more complicated actions requiring selection will be discussed in the
forthcoming posts. Stay tuned and see you next Friday!

However, this can quickly become tiring if you need to select a huge block of the listing (e.g.several screenfuls). In that case, the anchor
selection will be of great use.

https://hex-rays.com/blog/igor-tip-of-the-week-03-selection-in-ida/

#04: More selection!

https://hex-rays.com/blog/igor-tip-of-the-week-04-more-selection/

In the previous post we talked about the basic usage of selection in IDA. This week we’ll describe a few more examples of
actions a�ected by selection.

Firmware/raw binary analysis

When disassembling a raw binary, IDA is not always able to detect code fragments and you may have to resort to trial & error for
finding the code among the whole loaded range which can be a time-consuming process. In such situation the following simple
approach may work for initial reconnaissance:

1. Go to the start of the database (Ctrl-PgUp);
2. Start selection (Alt-L);
3. Go to the end (Ctrl-PgDn). You can also go to a specific point that you think may be the end of code region (e.g. just before a big
 chunk of zeroes or FF bytes);
4. Select Edit > Code or press C. You’ll get a dialog asking what specific action to perform:

5. Click “Force” if you’re certain there are mostly instructions in the selected range, or “Analyze” if there may be data between instructions.
6. IDA will go through the selected range and try to convert any undefined bytes to instructions. If there is indeed valid code in the
selected area, you might see fu nctions being added to the Functions window (probably including some false positives).

Structure o�sets

Igor’s tip of the week - season 01

28 Aug 2020

Another useful application of selection is applying structure o�sets to multiple instructions. For example, let’s consider this function
from a UEFI module:

.text:0000000000001A64 sub_1A64 proc near ; CODE XREF: sub_15A4+EB↑p

.text:0000000000001A64 ; sub_15A4+10E↑p

.text:0000000000001A64

.text:0000000000001A64 var_28 = qword ptr -28h

.text:0000000000001A64 var_18 = qword ptr -18h

.text:0000000000001A64 arg_20 = qword ptr 28h

.text:0000000000001A64

.text:0000000000001A64 push rbx

.text:0000000000001A66 sub rsp, 40h

.text:0000000000001A6A lea rax, [rsp+48h+var_18]

.text:0000000000001A6F xor r9d, r9d

.text:0000000000001A72 mov rbx, rcx

.text:0000000000001A75 mov [rsp+48h+var_28], rax

.text:0000000000001A7A mov rax, cs:gBS

.text:0000000000001A81 lea edx, [r9+8]

.text:0000000000001A85 mov ecx, 200h

.text:0000000000001A8A call qword ptr [rax+50h]

.text:0000000000001A8D mov rax, cs:gBS

.text:0000000000001A94 mov r8, [rsp+48h+arg_20]

.text:0000000000001A99 mov rdx, [rsp+48h+var_18]

.text:0000000000001A9E mov rcx, rbx

.text:0000000000001AA1 call qword ptr [rax+0A8h]

.text:0000000000001AA7 mov rax, cs:gBS

.text:0000000000001AAE mov rcx, [rsp+48h+var_18]

.text:0000000000001AB3 call qword ptr [rax+68h]

.text:0000000000001AB6 mov rax, [rsp+48h+var_18]

.text:0000000000001ABB add rsp, 40h

.text:0000000000001ABF pop rbx

.text:0000000000001AC0 retn

.text:0000000000001AC0 sub_1A64 endp

https://hex-rays.com/blog/igor-tip-of-the-week-04-more-selection/

#04: More selection!

https://hex-rays.com/blog/igor-tip-of-the-week-04-more-selection/

If we know that gBS is a pointer to EFI_BOOT_SERVICES, we can convert accesses
to it (in the call instructions) to structure o�sets. It can be done for each access
manually but is tedious. In such situation the selection can be helpful. If we
select the instructions accessing the structure and press T (structure o�set), a
new dialog pops up:

You can select which register is used as the base, which structure to apply and
even select which specific instructions you want to convert.

After selecting rax and EFI_BOOT_SERVICES, we get a nice-looking listing:

Igor’s tip of the week - season 01

28 Aug 2020

.text:0000000000001A64 sub_1A64 proc near ; CODE XREF: sub_15A4+EB↑p

.text:0000000000001A64 ; sub_15A4+10E↑p

.text:0000000000001A64

.text:0000000000001A64 Event = qword ptr -28h

.text:0000000000001A64 var_18 = qword ptr -18h

.text:0000000000001A64 Registration = qword ptr 28h

.text:0000000000001A64

.text:0000000000001A64 push rbx

.text:0000000000001A66 sub rsp, 40h

.text:0000000000001A6A lea rax, [rsp+48h+var_18]

.text:0000000000001A6F xor r9d, r9d ; NotifyContext

.text:0000000000001A72 mov rbx, rcx

.text:0000000000001A75 mov [rsp+48h+Event], rax ; Event

.text:0000000000001A7A mov rax, cs:gBS

.text:0000000000001A81 lea edx, [r9+8] ; NotifyTpl

.text:0000000000001A85 mov ecx, 200h ; Type

.text:0000000000001A8A call [rax+EFI_BOOT_SERVICES.CreateEvent]

.text:0000000000001A8D mov rax, cs:gBS

.text:0000000000001A94 mov r8, [rsp+48h+Registration] ; Registration

.text:0000000000001A99 mov rdx, [rsp+48h+var_18] ; Event

.text:0000000000001A9E mov rcx, rbx ; Protocol

.text:0000000000001AA1 call [rax+EFI_BOOT_SERVICES.RegisterProtocolNotify]

.text:0000000000001AA7 mov rax, cs:gBS

.text:0000000000001AAE mov rcx, [rsp+48h+var_18] ; Event

.text:0000000000001AB3 call [rax+EFI_BOOT_SERVICES.SignalEvent]

.text:0000000000001AB6 mov rax, [rsp+48h+var_18]

.text:0000000000001ABB add rsp, 40h

.text:0000000000001ABF pop rbx

.text:0000000000001AC0 retn

.text:0000000000001AC0 sub_1A64 endp

Forced string literals

When some code is referencing a string, IDA is usually smart enough to detect it and
convert referenced bytes to a literal item. However, in some cases the automatic
conversion does not work, for example:

• string contains non-ASCII characters
• string is not null-terminated

A common example of the former is Linux kernel which uses a special byte
sequence to mark di�erent categories of kernel messages. For example, consider
this function from the joydev.ko module:

IDA did not automatically create a string at 1BC8 because it starts with a non-ASCII
character. However, if we select the string’s bytes and press A (Convert to string), a
string is created anyway:

https://hex-rays.com/blog/igor-tip-of-the-week-04-more-selection/

#04: More selection!

https://hex-rays.com/blog/igor-tip-of-the-week-04-more-selection/

struct copyentry {
 void *source;
 void *dest;
 int size;
 void* copyfunc;
};

Igor’s tip of the week - season 01

28 Aug 2020

Creating structures from data

While such a structure can always be created manually in the Structures window, often it’s easier to format the data first then
create a structure which describes it. After creating the four data items, select them and from the context menu, choose
“Create struct from selection”:

This action is useful when dealing with structured data in binaries. Let’s consider a table with approximately this layout of
entries:

IDA will create a structure representing the selected data items which can then be used to format other entries in the program
or in disassembly to better understand the code working with this data.

https://hex-rays.com/blog/igor-tip-of-the-week-04-more-selection/

#05: Highlight

https://hex-rays.com/blog/igor-tip-of-the-week-05-highlight/

In IDA, highlight is the dynamic coloring of a word or number under the cursor as well as all matching substrings on the screen.
In the default color scheme, a yellow background color is used for the highlight.

Highlight is updated when you click on a non-whitespace location in the listing or move the cursor with the arrow keys.
Highlight is not updated (remains the same) when:

Register highlight

For some processors, highlighted registers are treated in a special way: not only is
the same register highlighted but also any register which contains it or is a part of it.
For example, on x86_x64, if ax is selected, then al, ah, eax and rax get highlighted
too.

Igor’s tip of the week - season 01

04 Sep 2020

• moving the cursor with PgUp, PgDn, Home, End;
• scrolling the listing with mouse wheel or scroll bar;
• using Jump commands or clicking in the navigation band (unless the cursor
 happens to land on a word at the new location);
• highlight is locked by the LockHighlight action (it is one of the handful of
 actions which are only available as a toolbar button by default).

Manual highlight

In addition to the automatic highlight by clicking on a word/number, you can also
select an arbitrary substring using mouse or keyboard and it will be used to highlight
all matching sequences on the screen. For manual highlight, only exactly matching
substrings are highlighted — there is no special handling for the registers.

Manual highlight

You can quickly jump between highlighted matches using Alt-Up and Alt-Down. This works even if the closest match is not on screen
— IDA will look for next match in the selected direction.

Highlight is available not only in the disassembly listing but in most text-based IDA subviews: Pseudocode, Hex View, Structures and
Enums.

https://hex-rays.com/blog/igor-tip-of-the-week-05-highlight/

#06: IDA Release notes

https://hex-rays.com/blog/igor-tip-of-the-week-06-release-notes/

With every IDA release1, we publish detailed release notes describing various new features, improvements and bugfixes. While
some of the additions are highlighted and therefore quite visible, others are not so obvious and may require careful reading.
Having a closer look at these release notes, you will be surprised to see many small but useful features added through di�erent
IDA versions.

A couple of good examples can be:

Text input dialog boxes (e.g. Enter Comment or Edit Local Type)

Added in IDA 7.5, these actions allow you to quickly jump between various uses of a register.

Shift-Alt-Up : find the previous location where the selected register is defined (written to).

Shift-Alt-Down : find the next location where the selected register is used (read from or partially overwritten).

These actions are especially useful in big functions compiled with high optimization level where the distance between definition and
use can be quite big so tracking registers visually using standard highlight3 is not always feasible.

Added in IDA 7.2, these are minor but very useful shortcuts, especially in large binaries with many big functions.

By the way, if standard shortcuts are tricky to use, you can always set custom ones using a key combination you prefer.

In the above screenshot, you can see that Alt-Up jumps to the closest highlight
substring match while Shift-Alt-Up finds where rbx was changed (ebx is the low
part of rbx so the xor instruction changes rbx).

These actions are currently implemented for a limited number of processors
(x86/x64, ARM, MIPS), but may be extended to others if we get more requests.

• UI: added actions to search for register definition or register use (Shift+Alt+Up, Shift+Alt+Down)
From: What’s new in IDA 7.52

Jump to previous or next function

+ ui: added shortcuts Ctrl+Shift+Up/Ctrl+Shift+Down to jump to the start of the previous/next function
From: What’s new in IDA 7.24

Igor’s tip of the week - season 01

11 Sep 2020

1 https://hex-rays.com/products/ida/news/
2 https://hex-rays.com/products/ida/news/7_5/
3 https://hex-rays.com/products/ida/news/7_2/
4 https://hex-rays.com/blog/igor-tip-of-the-week-02-ida-ui-actions-and-where-to-find-them/

https://hex-rays.com/blog/igor-tip-of-the-week-06-release-notes/
https://hex-rays.com/products/ida/news/
https://hex-rays.com/products/ida/news/7_5/
https://hex-rays.com/products/ida/news/7_2/
https://hex-rays.com/blog/igor-tip-of-the-week-02-ida-ui-actions-and-where-to-find-them/

ida -T<prefix> <filename>

Where <prefix> is a unique prefix of the loader description shown in the Load file dialog. For example, when loading a .NET
executable, IDA proposes the following options:

• Microsoft.Net assembly
• Portable executable for AMD64 (PE)
• MS-DOS executable (EXE)
• Binary file

For each of them, the corresponding-T option could be:

• -TMicrosoft
• -TPortable
• -TMS
• -TBinary

When the prefix contains a space, use quotes. For example, to load the first slice from a fat Mach-O file:

ida "-TFat Mach-O File, 1" file.macho

In case of archive formats like ZIP, you can specify the archive member to load after a colon (and additional loader names
nested as needed). For example, to load the main dex file from an .apk (which is a zip file):

ida -TZIP:classes.dex:Android file.apk

However, it is usually better to pick the APK loader at the top level (especially in the case of multi-dex files)

ida -TAPK file.apk

When -T is specified, the initial load dialog is skipped and IDA proceeds directly to loading the file using the specified loader
(but any additional prompts may still be shown).

#07: IDA command-line options cheatsheet

https://hex-rays.com/blog/igor-tip-of-the-week-07-ida-command-line-options-cheatsheet/

Most IDA users probably run IDA as a stand-alone application and use the UI to configure various options. However, it is possi-
ble to pass command-line options to it to automate some parts of the process. The full set of options1 is quite long so we’ll
cover the more common and useful ones.

 In the examples below, ida can be replaced by ida64 for 64-bit files, or idat (idat64) for console (text-mode) UI.

Simply open a file in IDA

ida <filename>

<filename> can be a new file that you want to disassemble or an existing database. This usage is basically the same as using File >
Open or dropping the file onto IDA’s icon. You still need to manually confirm the options in the Load File dialog or any other prompts
that IDA displays, but the initial splash screen is skipped.

 If you use any additional command-line options, make sure to put them before the filename or they’ll be ignored.

Igor’s tip of the week - season 01

18 Sep 2020

1 https://hex-rays.com/products/ida/support/idadoc/417.shtml.html

Open a file and auto-select a loader

Auto-accept any prompts, informational messages or warnings

Sometimes you just want to load the file and simply accept all default settings. In such case you can use the -A switch:

ida -A <filename>

This will load the file using autonomous, or batch, mode, where IDA will not display any dialog but accept the default answer in
all cases.

https://hex-rays.com/blog/igor-tip-of-the-week-07-ida-command-line-options-cheatsheet/
https://hex-rays.com/products/ida/support/idadoc/417.shtml.html

When loading raw binary files, IDA cannot use any of the metadata that is present in higher-level file formats like ELF, PE or
Mach-O. In particular, the processor type and loading address cannot be deduced from the file and have to be provided by the
user. To speed up your workflow, you can specify them on the command line:

ida -p<processor> -B<base> <filename>

<processor> is one of the processor types3 supported by IDA. Some processors also support options after a colon.

<base> is the hexadecimal load base in paragraphs (16-byte quantities). In practice, it means that you should remove the last
zero from the full address.

For example, to load a big-endian MIPS firmware at linear address 0xBFC00000:

ida -pmipsb -bBFC0000 firmware.bin

A Cortex-M3 firmware mapped at 0x4000:

ida -parm:ARMv7-M -b400 firmware.bin

#07: IDA command-line options cheatsheet

https://hex-rays.com/blog/igor-tip-of-the-week-07-ida-command-line-options-cheatsheet/

In this mode no interactive dialogs will show up after loading is finished (e.g not even “Rename” or “Add comment”). To
restore interactivity, execute batch(0)2 statement in the IDC or Python console at the bottom of IDA’s window.

Batch disassembly

This is an extension of the previous section and is invoked using the -B switch:

ida -B <filename>

IDA will load the file using all default options, wait for the end of auto-analysis, output the disassembly to <filename>.asm and
exit after saving the database.

Igor’s tip of the week - season 01

18 Sep 2020

2 https://hex-rays.com/products/ida/support/idadoc/287.shtml
3 https://hex-rays.com/products/ida/support/idadoc/618.shtml

Binary file options

When IDA is running autonomously, you may miss the messages that are usually printed in the Output window but they may
contain important informational messages, errors, or warnings. To keep a copy of the messages you can use the -L switch:

ida -B -Lida_batch.log <filename>

Logging

https://hex-rays.com/blog/igor-tip-of-the-week-07-ida-command-line-options-cheatsheet/
https://hex-rays.com/products/ida/support/idadoc/287.shtml
https://hex-rays.com/products/ida/support/idadoc/618.shtml

We’ve briefly covered batch mode last time but the basic functionality is not always enough so let’s discuss how to customize it.

Basic usage

To recap, the batch mode can be invoked with this command line:

ida -B -Lida.log <other switches> <filename>

IDA will load the file, wait for the end of analysis, and write the full disassembly to <filename>.asm

How it works

In fact, -B is a shorthand for -A -Sanalysis.idc:

#08: Batch mode under the hood

https://hex-rays.com/blog/igor-tip-of-the-week-08-batch-mode-under-the-hood/

Igor’s tip of the week - season 01

25 Sep 2020

1 https://hex-rays.com/products/ida/support/idadoc/244.shtml
2 https://hex-rays.com/decompiler/
3 https://hex-rays.com/products/decompiler/manual/batch.shtml

• -A: enable autonomous mode (answer all queries with the default choice).
• -Sanalysis.idc: run the script analysis.idc after loading the file.

You can find analysis.idc in the idc subdirectory of IDA install. In IDA 7.5 it looks as follows:

static main()
{

// turn on coagulation of data in the final pass of analysis
set_inf_attr(INF_AF, get_inf_attr(INF_AF) | AF_DODATA | AF_FINAL);
// .. and plan the entire address space for the final pass
auto_mark_range(0, BADADDR, AU_FINAL);
msg("Waiting for the end of the auto analysis...\n");
auto_wait();
msg("\n\n------ Creating the output file.... --------\n");
auto file = get_idb_path()[0:-4] + ".asm";
auto fhandle = fopen(file, "w");
gen_file(OFILE_ASM, fhandle, 0, BADADDR, 0); // create the assembler
file
msg("All done, exiting...\n");
qexit(0); // exit to OS, error code 0 - success

}

Thus, to modify the behavior of the batch mode you can:

• Either modify the standard analysis.idc
• Or specify a di�erent script using -S<myscript.idc>

For example, to output an LST file (it includes address prefixes), change the gen_file1 call:

gen_file(OFILE_LST, fhandle, 0, BADADDR, 0);

Batch decompilation

If you have the decompiler2 for the target file’s architecture, you can also run it in batch mode3. For example, to decompile the whole file:

ida -Ohexrays:outfile.c:ALL -A <filename>

To decompile only the function main:

ida -Ohexrays:outfile.c:main -A <filename>

This uses the functionality built-in into the decompiler plugin which works similarly to the analysis.idc script (wait for the end of
autoanalysis, then decompile the specified functions to outfile.c).

https://hex-rays.com/blog/igor-tip-of-the-week-08-batch-mode-under-the-hood/
https://hex-rays.com/products/ida/support/idadoc/244.shtml
https://hex-rays.com/decompiler/
https://hex-rays.com/products/decompiler/manual/batch.shtml

#08: Batch mode under the hood

https://hex-rays.com/blog/igor-tip-of-the-week-08-batch-mode-under-the-hood/

Customizing batch decompilation

If the default functionality is not enough, you could write a plugin to drive the decompiler via its C++ API4. However, for scripting it’s
probably more convenient to use Python. Similarly to IDC, Python scripts can be used with the -S switch to be run automatically after
the file is loaded.

A sample script is attached to this post. Use it as follows:

ida -A -Sdecompile_entry_points.py -Llogfile.txt <filename>

Speeding up batch processing

In the examples so far we’ve been using the ida executable which is the full GUI version of IDA. Even though the UI is not actually
displayed in batch mode, it still has to load and initialize all the dependent UI libraries which can take non-negligible time. This is why it
is often better to use the text-mode executable (idat) which uses lightweight text-mode UI. However, it still needs a terminal even in
batch mode. In case you need to run it in a situation without a terminal (e.g. run it in background or from a daemon), you can use the
following approach:

1. set environment variable TVHEADLESS=1
2. redirect output

For example:

TVHEADLESS=1 idat -A -Smyscript.idc file.bin >/dev/null &

Downloads
decompile_entry_points.py5

Igor’s tip of the week - season 01

25 Sep 2020

4 https://hex-rays.com/products/decompiler/sdk/
5 https://hex-rays.com/wp-content/uploads/2020/09/decompile_entry_points.py

https://hex-rays.com/blog/igor-tip-of-the-week-08-batch-mode-under-the-hood/
https://hex-rays.com/products/decompiler/sdk/
https://hex-rays.com/wp-content/uploads/2020/09/decompile_entry_points.py

#09: Reanalysis

https://hex-rays.com/blog/igor-tip-of-the-week-09-reanalysis/

While working in IDA, sometimes you may need to reanalyze some parts of your database, for example:

• after changing a prototype of an external function (especially calling convention, number of purged bytes, or “Does not return” flag);
• after fixing up incorrectly detected ARM/Thumb or MIPS32/MIPS16 regions;
• after changing global processor options (e.g. setting $gp value in MIPS or TOC in PPC);
• other situations (analyzing switches, etc.)

Reanalyzing individual instructions

To reanalyze an instruction, position the cursor in it and press C (convert to code). Even if the instruction is already code, this action is
not a no-op: it asks the IDA kernel to:

1. delete cross-references from the current address;
2. have the processor module reanalyze the instruction; normally this should result in (re-)creation of cross-references, including the
 flow cross-reference to the following instruction (unless the current instruction stops the code flow).

Igor’s tip of the week - season 01

02 Oct 2020

1 https://hex-rays.com/blog/igor-tip-of-the-week-04-more-selection/

Reanalyzing a function

All of the function’s instructions are reanalyzed when any of the function’s parameters are changed (e.g.. in case stack variables need
to be recreated). So, the following key sequence causes the whole function to be reanalyzed: Alt-P(Edit function), Enter(confirm
dialog).

Reanalyzing a bigger range of instructions

For this we can use the trick covered in the post on selection1.

1. go to start of the range;
2. press (start selection);
3. go to the end of selection;
4. press (convert to code). Pick “Analyze” in the first prompt and “No” in the second.

Reanalyzing whole database

If you need to reanalyze everything but don’t want to go through the hassle of select-
ing all the code, there is a dedicated command which can be invoked in two ways:

1. Menu Options > General…, Analysis Tab, Reanalyze program button;
2.Right-click the status bar at the bottom of IDA’s window, Reanalyze program

https://hex-rays.com/blog/igor-tip-of-the-week-09-reanalysis/
https://hex-rays.com/blog/igor-tip-of-the-week-04-more-selection/

#10: Working with arrays

https://hex-rays.com/blog/igor-tip-of-the-week-10-working-with-arrays/

Arrays are used in IDA to represent a sequence of multiple items of the same type: basic types (byte, word, dword etc.) or complex
ones (e.g. structures).

Creating an array

Quick menu navigation

To create an array:

1. Create the first item;
2. Choose “Array…” from the context menu , or press * ;
3. Fill in at least the Array size field and click OK.

Step 1 is optional; if no data item exists at the current location, a byte array will be created.

Hint: if you select a range before pressing *, Array size will be pre-filled with the number of items which fits into the selected range.

Array parameters a�ect how the array is displayed in the listing and can be set at the
time the array is first created or any time later by pressing *.

• Array size: total number of elements in the array;
• Items on a line: how many items (at most) to print on one line. 0 means to print the
 maximum number which fits into the disassembly line;
• Element print width: how many characters to use for each element. Together with
 the previous parameter can be used for formatting arrays into nice-looking tables.
 For example: 8 items per line, print width -1:

db 1, 2, 3, 4, 5, 6, 7, 8
db 9, 10, 11, 12, 13, 14, 15, 16
db 17, 18, 19, 20, 21, 22, 23, 24
db 25, 255, 255, 255, 255, 255, 255, 26
db 27, 28, 29, 30, 31, 32, 33, 34
db 35, 36, 37, 38, 39, 40, 41, 42

print width 0:

db 1, 2, 3, 4, 5, 6, 7, 8
db 9, 10, 11, 12, 13, 14, 15, 16
db 17, 18, 19, 20, 21, 22, 23, 24
db 25,255,255,255,255,255,255, 26
db 27, 28, 29, 30, 31, 32, 33, 34
db 35, 36, 37, 38, 39, 40, 41, 42

print width 5:

db 1, 2, 3, 4, 5, 6, 7, 8
db 9, 10, 11, 12, 13, 14, 15, 16
db 17, 18, 19, 20, 21, 22, 23, 24
db 25, 255, 255, 255, 255, 255, 255, 26
db 27, 28, 29, 30, 31, 32, 33, 34
db 35, 36, 37, 38, 39, 40, 41, 42

Igor’s tip of the week - season 01

09 Oct 2020

• Use “dup” construct: for assemblers that support it, repeated items with the same value will be collapsed into a dup expression
 instead of printing each item separately;
 dup o�: db 0FFh, 0FFh, 0FFh, 0FFh, 0FFh, 0FFh
 dup on: db 6 dup(0FFh)
• Signed elements: integer items will be treated as signed numbers;
• Display indexes: for each line, first item’s array index will be printed in a comment.
• Create as array: if unchecked, IDA will convert the array into separate items.

https://hex-rays.com/blog/igor-tip-of-the-week-10-working-with-arrays/

#10: Working with arrays

https://hex-rays.com/blog/igor-tip-of-the-week-10-working-with-arrays/

Creating multiple string literals

The last option in array parameters dialog can be useful when dealing with multiple
string literals packed together. For example, if we have a string table like this:

First, create one string.

Then, select it and all the following strings using one of the methods described
before1.

Invoke Edit > Array… or press *. The array size will be set to the total length of the
selection. In the dialog, uncheck “Create as array”. Click OK.

We get a nicely formatted string table!

This approach works also with Unicode (UTF-16) strings.

Igor’s tip of the week - season 01

09 Oct 2020

1 https://www.hex-rays.com/blog/igor-tip-of-the-week-04-more-selection/

https://hex-rays.com/blog/igor-tip-of-the-week-10-working-with-arrays/
https://www.hex-rays.com/blog/igor-tip-of-the-week-04-more-selection/

#11: Quickly creating structures

https://hex-rays.com/blog/igor-tip-of-the-week-11-quickly-creating-structures/

When reverse engineering a big program, you often run into information stored in structures. The standard way of doing it involves
using the Structures window and adding fields one by one, similar to the way you format data items in disassembly. But are there other
options? Let’s look at some of them.

Using already formatted data

This was mentioned briefly in the post on selection1 but is worth repeating. If you
happen to have some formatted data in your disassembly and want to group it into a
structure, just select it and choose “Create struct from selection” in the context
menu.

Igor’s tip of the week - season 01

16 Oct 2020

1 https://hex-rays.com/blog/igor-tip-of-the-week-03-selection-in-ida/
2 https://www.hex-rays.com/products/ida/support/idadoc/1042.shtml

Using Local Types

The Local Types view shows the high level or C level types used in the database
such as structs, enums and typedefs. It is most useful with the decompiler but can
still be used for the assembler level types such as Structures and Enums. For exam-
ple, open the Local Types (Shift-F1 or View > Open subviews > Local Types), then
press Ins (or pick Insert.. from the context menu). In the new dialog enter a C syntax
structure definition and click OK.

The structure appears in the list but cannot yet be used in disassembly.

To make it available, double-click it and answer “Yes”.

Now that a corresponding assembler level type has been created in the Structures
view, it can be used in the disassembly.

For more info about using Local Types and two kinds of types check this IDA Help
topic2.

https://www.hex-rays.com/blog/ig-https://16
https://www.hex-rays.com/blog/ig-https://16
https://hex-rays.com/blog/igor-tip-of-the-week-03-selection-in-ida/
https://www.hex-rays.com/products/ida/support/idadoc/1042.shtml

#12: Creating structures with known size

https://hex-rays.com/blog/igor-tip-of-the-week-12-creating-structures-with-known-size/ v

Fixed-size structure 1: single array

Sometimes you know the structure size but not the actual layout yet. For example,
when the size of memory being allocated for the structure is fixed:

In such cases, you can quickly make a dummy structure and then modify it as you
analyze code which works with it. There are several approaches which can be used
here.

This is the fastest option but makes struct modification a little awkward.

1. create the struct (go to Structures view, press Ins and specify a name);
2. create the array (position cursor at the start of the struct, press * and enter the

size (decimal or hex)

When you need to create a field in the middle, press * to resize the array so it ends
before the field, create the field, then create another array after it to pad the struct to
the full size again.

Igor’s tip of the week - season 01

23 Oct 2020

Fixed-size structure 2: big gap in the middle

1. create the struct (go to Structures view, press Ins and specify a name);
2. create a byte field (press D);
3. add a gap (Ctrl-E or “Expand struct type..” in context menu) and enter the size

minus 1;
4. (optional but recommended) On field_0 which is now at the end of the struct,
press N, Del, Enter. This will reset the name to match the actual o�set and will not
hinder creation of another field_0 at o�set 0 if needed.

To create fields in the middle of the gap, go to the specific o�set in the struct (G can
be used for big structs).

Fixed-size structure 3: fill with dummy fields

1. create the struct (go to Structures view, press Ins and specify a name);
2. create one dummy field (e.g. a dword);
3. press * and enter the size (divided by the field size if di�erent from byte). Uncheck

“Create as array” and click OK.

https://hex-rays.com/blog/igor-tip-of-the-week-12-creating-structures-with-known-size/

#12: Creating structures with known size

https://hex-rays.com/blog/igor-tip-of-the-week-12-creating-structures-with-known-size/ v

Fixed-size structure 1: single array

Using a structure with a gap in the middle (option 2 above) is especially useful when analyzing functions that work with it using a fixed
register base. For example, this function uses rbx as the base for the structure:

ATI6000Controller::initializeProjectDependentResources(void) proc near
 push rbp
 mov rbp, rsp
 push rbx
 sub rsp, 8
 mov rbx, rdi
 lea rax, `vtable for'NI40SharedController
 mov rdi, rbx ; this
 call qword ptr [rax+0C30h]
 test eax, eax
 jnz loc_25CD
 mov rax, [rbx+168h]
 mov [rbx+4B8h], rax
 mov rax, [rbx+178h]
 mov [rbx+4C0h], rax
 mov rax, [rbx+150h]
 mov [rbx+4C8h], rax
 mov [rbx+4B0h], rbx
 mov rax, [rbx+448h]
 mov [rbx+4D0h], rax
 mov rcx, [rbx+170h]
 mov [rbx+4D8h], rcx
 mov rcx, [rax]
 mov [rbx+4E0h], rcx
 mov eax, [rax+8]
 mov [rbx+4E8h], rax
 call NI40PowerPlayManager::createPowerPlayManager(void)
 mov [rbx+450h], rax
 test rax, rax
 jnz short loc_2585
 mov eax, 0E00002BDh
 jmp short loc_25CD

loc_2585:
 mov rcx, [rax]
 lea rsi, [rbx+4B0h]
 ...

To automatically create fields for all rbx-based accesses:

Igor’s tip of the week - season 01

23 Oct 2020

1. select all instructions using rbx;
2. from context menu, choose “Structure o�set” (or press T);
3. in the dialog, make sure Register is set to rbx, select the created struct (a red

cross simply means that it has no fields at the matching o�sets currently);
4. from the right pane’s context menu, choose “Add missing fields”.

You can then repeat this for all other functions working with the structure to create
other missing fields.

https://hex-rays.com/blog/igor-tip-of-the-week-12-creating-structures-with-known-size/

#13: String literals and custom encodings

https://hex-rays.com/blog/igor-tip-of-the-week-13-string-literals-and-custom-encodings/

Most of IDA users probably analyze software that uses English or another Latin-based alphabet. Thus the defaults used for
string literals – the OS system encoding on Windows and UTF-8 on Linux or macOS – are usually good enough. However,
occasionally you may encounter a program which does use another language.

Unicode strings

In case the program uses wide strings, it is usually enough to use the corresponding
“Unicode C-style” option when creating a string literal:

In general, Windows programs tend to use 16-bit wide strings (wchar_t is 16-bit) while
Linux and Mac use 32-bit ones (wchar_t is 32-bit). That said, exceptions happen
and you can use either one depending on a specific binary you’re analyzing.

Hint: you can use accelerators to quickly create specific string types, for example
Alt-A , U for Unicode 16-bits.

Igor’s tip of the week - season 01

30 Oct 2020

Custom encodings

There may be situations when the binary being analyzed uses an encoding di�erent from the one picked by IDA, or even multiple
mutually incompatible encodings in the same file. In that case you can set the encoding separately for individual string literals, or
globally for all new strings.

Add a new encoding
To add a custom encoding to the default list (usually UTF-8, UTF-16LE and UTF-32LE):

1. Options > String literals… (Alt-A);
2. Click the button next to “Currently:”;
3. In context menu, “Insert…” (Ins);
4. Specify the encoding name.

For the encoding name you can use:
• Windows codepages (e.g. 866, CP932, windows-1251)
• Well-known charset names (e.g. Shift-JIS, UTF-8, Big5)

On Linux or macOS, run iconv -l to see the available encodings.

Note: some encodings are not supported on all systems so your IDB may become system-specific.

https://hex-rays.com/blog/igor-tip-of-the-week-13-string-literals-and-custom-encodings/

#13: String literals and custom encodings

https://hex-rays.com/blog/igor-tip-of-the-week-13-string-literals-and-custom-encodings/

Igor’s tip of the week - season 01

30 Oct 2020

Use the encoding for a specific string literal
1. Invoke Options > String literals… (Alt-A);
2. Click the button next to “Currently:”;
3. Select the encoding to use;
4. Click the specific string button (e.g. C-Style) if creating a new literal or just OK if modifying an existing one.

Set an encoding as default for all new string literals
1. Invoke Options > String literals… (Alt-A);
2. Click “Manage defaults”;
3. Click the button next to “Default 8-bit” and select the encoding to use.

From now on, the A shortcut will create string literals with the new default encoding, but you can still override it on a case-by-case
basis, as described above.

https://hex-rays.com/blog/igor-tip-of-the-week-13-string-literals-and-custom-encodings/

#14: Comments in IDA

https://hex-rays.com/blog/igor-tip-of-the-week-14-comments-in-ida/

The “I” in IDA stands for interactive, and one of the most common interactive actions you can perform is adding comments to
the disassembly listing (or decompiler pseudocode). There are di�erent types of comments you can add or see in IDA.

Regular comments

These comments are placed at the end of the disassembly line, delimited by an
assembler-specific comment character (semicolon, hash, at-sign etc.). A multi-line
comment shifts the following listing lines down and is printed aligned with the first
line which is why they can also be called indented comments

Shortcut: : (colon)

Igor’s tip of the week - season 01

06 Nov 2020

1 https://www.hex-rays.com/products/decompiler/manual/cmd_comments.shtml
2 https://www.hex-rays.com/products/decompiler/manual/cmd_block_cmts.shtml

Repeatable comments

Basically equivalent to regular comments with one small distinction: they are repeat-
ed in any location which refers to the original comment location. For example, if you
add a repeatable comment to a global variable, it will be printed at any place the
variable is referenced.

Shortcut: ; (semicolon)

Function comments

A repeatable comment added at the first instruction of a function is considered a
function comment. It is printed before the function header and — since it’s a repeat-
able comment — at any place the function is called from. They’re good for describing
what the function does in more detail than can be inferred from the function’s name.

Shortcut: ; (semicolon)

Anterior and posterior comments

These are printed before (anterior) or after (posterior) the current address as
separate lines of text, shifting all other listing lines. They are suitable for extended
explanations, ASCII art and other freestanding text. Unlike regular comments, no
assembler comment characters are added automatically.

Shortcuts: Ins, Shift-Ins (I and Shift-I on Mac)

Trivia: the comment with file details that is usually added at the beginning of the
listing is an anterior comment so you can use to edit it.

Pseudocode comments

In the decompiler pseudocode you can also add indented1 comments using the
shortcut / (slash) and block2 comments using Ins (I on Mac). They are stored
separately from the disassembly comments, however function comments are shared
with those in disassembly.

https://hex-rays.com/blog/igor-tip-of-the-week-14-comments-in-ida/
https://www.hex-rays.com/products/decompiler/manual/cmd_comments.shtml
https://www.hex-rays.com/products/decompiler/manual/cmd_block_cmts.shtml

#14: Comments in IDA

https://hex-rays.com/blog/igor-tip-of-the-week-14-comments-in-ida/

Automatic comments

In some situations IDA itself can add comments to disassembly. A few examples:

“Auto comments” in Option > General.., Disassembly tab enables instruction comments.

Demangled names are shown as auto comments by default. Use the Options > Demangled names… dialog if you prefer to replace the
mangled symbol directly in the listing.

Igor’s tip of the week - season 01

06 Nov 2020

String literals work similarly to repeatable comments: the string contents shows up as a comment in the place it’s referenced from.

https://hex-rays.com/blog/igor-tip-of-the-week-14-comments-in-ida/

#15: Comments in structures and enums

https://hex-rays.com/blog/igor-tip-of-the-week-15-comments-in-structures-and-enums/

Last week we’ve discussed various kinds of comments1 in IDA’s disassembly and pseudocode views.

In fact, the comments are also available for Structures and Enums. You can add them both for the struct/enum as a whole and
for individual members. Similar to the disassembly, regular and repeatable comments are supported.

Repeatable comments are duplicated in the listing when the enum or structure member is used.

One interesting use of this is for C++ class vtables (or any struct with pointers): if you add the comment with the method’s
address in the vtable structure, it will be printed in disassembly and you can double-click it to jump to the implementation or
hover over it to see a hint window with disassembly.

Igor’s tip of the week - season 01

13 Nov 2020

1 https://hex-rays.com/blog/igor-tip-of-the-week-14-comments-in-ida/

https://hex-rays.com/blog/igor-tip-of-the-week-15-comments-in-structures-and-enums/
https://hex-rays.com/blog/igor-tip-of-the-week-14-comments-in-ida/

X is probably the most common and useful shortcut: press it to see the list of
cross-references to the identifier under cursor. Pick an item from the list to jump to
it. The shortcut works not only for disassembly addresses but also for stack
variables (in a function) as well as structure and enum members.

Ctrl-X works similarly but shows the list of cross-references to the current address,
regardless of where the cursor is in the line. For example, it is useful when you need
to check the list of callers of the current function while being positioned on its first
instruction.

Quick menu navigation

In the graph view, code cross-references are shown as edges (arrows) between
code blocks. You can navigate by following the arrows visually or double-clicking.

In text mode, cross-references to the current address are printed as comments at
the end of the line. By default, maximum two references are printed; if there are more,
ellipsis (…) is shown. You can increase the amount of printed cross-references in
Options > General… Cross-references tab.

Only explicit references are shown in comments; flow cross-references are not
displayed in text mode. However, the absence of a flow cross-reference (end of code
execution flow) is shown by a dashed line; usually it’s seen after unconditional jumps
or returns but can also appear after calls to non-returning functions.

To navigate to the source of the cross-reference, double-click or press Enter on the
address in the comment.

There are two groups of cross-references:

1. code cross-references indicate a relationship between two areas of code:
 1. jump cross-reference indicates conditional or unconditional transfer of execution to another location.
 2. call cross-reference indicates a function or procedure call with implied return to the address following the call instruction.
 3. flow cross-reference indicates normal execution flow from current instruction to the next. This xref type is rarely shown
 explicitly in IDA but is used extensively by the analysis engine and plugin/script writers need to be aware of it.
2. data cross-references are used for references to data, either from code or from other data items:
 1. read cross-reference indicates that the data at the address is being read from.
 2. write cross-reference indicates that the data at the address is being written to.
 3. o�set cross-reference indicates that the address the of the item is taken but not explicitly read or written.
 4. structure cross-references are added when a structure is used in the disassembly or embedded into another structure.

The cross-reference types may be denoted by single-letter codes which are described in IDA’s help topic “Cross reference attributes”.

#16: Cross-references

https://hex-rays.com/blog/igor-tip-of-the-week-16-cross-references/

cross-reference, n.
A reference or direction in one place in a book or other source of information to information at another place in the same work
(from Wiktionary1)

To help you during analysis, IDA keeps track of cross-references (or xrefs for short) between di�erent parts of the program.
You can inspect them, navigate them or even add your own to augment the analysis and help IDA or the decompiler.

Types of cross-references

Igor’s tip of the week - season 01

20 Nov 2020

1 https://en.wiktionary.org/wiki/cross-reference

Shortcuts

https://hex-rays.com/blog/igor-tip-of-the-week-16-cross-references/
https://en.wiktionary.org/wiki/cross-reference

Ctrl-J, on the other hand, shows a list of cross-references from the current
address. Having multiple cross-references from a single location to multiple others is
a somewhat rare situation but one case where it’s useful is switches (table jumps):
using this shortcut on the indirect jump instructions allows you to quickly see and
jump to any of the switch cases.

If you forget the shortcuts or simply prefer using the mouse, you can find the corre-
sponding menu items in the Jump menu (and sometimes in the context menu).

#16: Cross-references

https://hex-rays.com/blog/igor-tip-of-the-week-16-cross-references/

Igor’s tip of the week - season 01

20 Nov 2020

https://hex-rays.com/blog/igor-tip-of-the-week-16-cross-references/

#17: Cross-references 2

https://hex-rays.com/blog/igor-tip-of-the-week-17-cross-references-2/

Cross references view

Adding cross-references

The jump to xref1 actions are good enough when you have a handful of cross-refer-
ences but what if you have hundreds or thousands? For such cases, the Cross
references view may be useful. You can open it using the corresponding item in the
View > Open Subviews menu. IDA will gather cross-references to the current disas-
sembly address and show them in a separate tab. It’s even possible to open several
such views at the same time (for di�erent addresses).

In some cases you may need to add a manual cross-reference, for example to fix up an obfuscated function’s control flow graph or
add a call cross-reference from an indirect call instruction discovered by debugging. There are several ways to do it.

• In the Cross references view, choose “Add cross-reference…” from the context
menu or press Ins. In the dialog, enter source and destination addresses and the xref
type.

• For indirect calls in binaries for PC (x86/x64), ARM, or MIPS processors, you can
use Edit > Plugins > Set callee address (Alt-F11).

• To add cross-references programmatically, use IDC or IDAPython functions
add_cref and add_dref2. Use the XREF_USER flag together with the xref type to
ensure that your cross-reference is not deleted by IDA on reanalysis:
add_cref(0x100897E8, 0x100907C0, fl_CN|XREF_USER)
add_dref(0x100A65CC, 0x100897E0, dr_O|XREF_USER)

Igor’s tip of the week - season 01

27 Nov 2020

1 https://hex-rays.com/blog/igor-tip-of-the-week-16-cross-references/
2 https://hex-rays.com/products/ida/support/idadoc/313.shtml

https://hex-rays.com/blog/igor-tip-of-the-week-17-cross-references-2/
https://hex-rays.com/blog/igor-tip-of-the-week-16-cross-references/
https://hex-rays.com/products/ida/support/idadoc/313.shtml

#18: Decompiler and global cross-references

https://hex-rays.com/blog/igors-tip-of-the-week-18-decompiler-and-global-cross-references/

Previously we’ve covered cross-references1 in the disassembly view but in fact you can also consult them in the decompiler
(pseudocode) view.

Local cross-references

The most common shortcut (X) works similarly to disassembly: you can use it on
labels, variables (local and global), function names, but there are some di�erences
and additions:

• for local variables, the list of cross-references shows pseudocode lines instead of
disassembly snippets.

• if you press X on an C statement keyword (e.g. if, while, return), all statements of
the same type in the current function will be shown

Igor’s tip of the week - season 01

03 Dec 2020

1 https://hex-rays.com/blog/igor-tip-of-the-week-16-cross-references/

Global cross-references

If you have a well-analyzed database with custom types used by the program and
properly set up function prototypes, you can ask the decompiler to analyze all
functions and build a list of cross-references to a structure field, an enum member or
a whole local type. The default hotkey is Ctrl-Alt-X.

When you use it for the first time, the list may be empty or include only recently
decompiled functions.

To cover all functions, refresh the list from the context menu or by pressing Ctrl-U.
This will decompile all functions in the database and gather the complete list. The
decompilation results are cached so next time you use the feature it will be faster.

https://hex-rays.com/blog/igors-tip-of-the-week-18-decompiler-and-global-cross-references/
https://hex-rays.com/blog/igor-tip-of-the-week-16-cross-references/

#19: Function calls

https://hex-rays.com/blog/igor-tip-of-the-week-19-function-calls/

When dealing with big programs or huge functions, you may want to know how various functions interact, for example where
the current function is called from and what other functions it calls itself. While for the former you can use “Cross-references
to”, for the latter you have to go through all instructions of the function and look for calls to other functions. Is there a better
way?

Function calls view

This view, available via View > Open subviews > Function calls, o�ers a quick
overview of calls to and from the current function. It is dynamic and updates as you
navigate to di�erent functions so it can be useful to dock it next to the listing to be
always visible. Double-click any line in the caller or called list to jump to the corre-
sponding address.

Igor’s tip of the week - season 01

10 Dec 2020

https://hex-rays.com/blog/igor-tip-of-the-week-19-function-calls/

#20: Going places

https://hex-rays.com/blog/igors-tip-of-the-week-20-going-places/

Even if you prefer to move around IDA by clicking, the G shortcut should be the one to remember. The action behind it is called
simply “Jump to address” but it can do many more things than what can be guessed from the name.

Jump to address

First up is the actual jumping to an address: enter an address value to jump to. You
can prefix it with 0x to denote hexadecimal notation but this is optional: in the
absence of a prefix, the entered string is parsed as a hexadecimal number.

In architectures with segmented architecture (e.g. 16-bit x86), a segment:o�set
syntax can be used. Segment can a be symbolic name (seg001, dseg) or hexadeci-
mal (F000); the o�set should be hexadecimal. If the current database contains both
segmented and linear (flat) addressed segments (e.g. a legacy 16-bit bootloader with
32-bit protected mode OS image in high memory), a “segment” 0 can be used to
force the usage of linear address (0:1000000).

Jump relative to current location

If the entered value is prefixed with + or -, it is treated as relative o�set from the cursor’s position. Once again, the 0x prefix is optional:
+100 jumps 256 bytes forward and -10000 goes 64KiB(65536 bytes) backwards.

Igor’s tip of the week - season 01

17 Dec 2020

Jump relative to current location

A name (function or global variable name, or a label) in the program can be entered
to jump directly to it. Note that the raw name should be entered as it’s used in the
program with any possible special symbols, for example _main for main() or
??2@YAPEAX_K@Z for operator new().

Jump to an expression

A C syntax expression can be used instead of a bare address or a name. Just like in C, the hexadecimal numbers must use the 0x
prefix – otherwise decimal is assumed. Names or the special keyword here can be used (and are resolved to their address). Some
examples:

• here + 32*4: skip 32 dwords. Equivalent to +80
• _main - 0x10: jump to a position 0x10 bytes before the function main()
• f2 + (f4-f3): multiple symbols can be used for complicated situations

Using registers

During debugging, you can use register names as variables, similarly to names in
preceding examples. For example, you can jump to EAX, RSP, ds:si(16-bit x86),
X0+0x20(ARM64) and so on. This works both in disassembly and the hex view.

https://hex-rays.com/blog/igors-tip-of-the-week-20-going-places/

#21: Calculator and expression evaluation feature in IDA

https://hex-rays.com/blog/igors-tip-of-the-week-21-calculator-and-expression-evaluation-feature-in-ida/

When reverse-engineering, sometimes you need to perform some simple calculations. While you can always use an external
calculator program, IDA has a built-in one. You can invoke it by pressing ? or via View > Calculator.

The calculator shows the result in hex, decimal, octal, binary and as a character constant. This information is also duplicated
in the Output window in case you need to copy it to somewhere else.

In addition to plain numbers, you can use names from the database, as well as register values during debugging similarly to the
“Jump to address” dialog from the previous tip1.

By the way, the number, address, or identifier under cursor is picked up automatically when you press ? so there’s no need to
copy or type it manually.

In fact, the expression evaluation feature is provided by the IDC language2 interpreter built-in into IDA. You can use expressions
in almost any place in IDA that accepts numbers: Jump to address, Make array, User-defined o�set and so on.

Igor’s tip of the week - season 01

08 Jan 2021

1 https://www.hex-rays.com/blog/igors-tip-of-the-week-20-going-places/
2 https://www.hex-rays.com/products/ida/support/idadoc/157.shtml
3 https://www.hex-rays.com/products/ida/support/idadoc/162.shtml

You can also use any of the available IDC functions3. For example, expressions like the following are possible during debugging:

get_qword(__security_cookie)^RSP

https://hex-rays.com/blog/igors-tip-of-the-week-21-calculator-and-expression-evaluation-feature-in-ida/
https://www.hex-rays.com/blog/igors-tip-of-the-week-20-going-places/
https://www.hex-rays.com/products/ida/support/idadoc/157.shtml
https://www.hex-rays.com/products/ida/support/idadoc/162.shtml

#22: IDA desktop layouts

https://hex-rays.com/blog/igors-tip-of-the-week-22-ida-desktop-layouts/

IDA’s default windows layout is su�cient to perform most standard analysis tasks, however it may not always be the best fit for
all situations. For example, you may prefer to open additional views or to modify existing ones depending on your monitor size,
specific tasks, or the binary being analyzed.

Rearranging windows

The standard operation is mostly intuitive – click and drag the window title to dock
the window elsewhere. While dragging, you will see the drop markers which can be
used to dock the window next to another or as a tab. You can also release the mouse
without picking any marker to make the window float independently.

Igor’s tip of the week - season 01

15 Jan 2021

1 https://hex-rays.com/products/ida/support/idadoc/1418.shtml

Docking a floating window

Once a window is floating, you can’t dock it again by dragging the title. Instead, hover
the mouse just below to expose the drag handle which can be used to dock it again.

Reset layout

If you want to start over, use Windows > Reset desktop to go back to the default layout.

Saving and using custom layouts

The layout is saved automatically in the database, but if you want to reuse it later
with a di�erent one, use Windows > Save desktop… to save it under a custom name
and later Windows > Load desktop… to apply it in another database or session.
Alternatively, check the “Default” checkbox to make this layout default for all new
databases.

Debugger desktop

When debugging, the windows layout changes to add views which are useful for the
debugger (e.g. debug registers, Modules, Threads). This can lead to crowded
display on small monitors so rearranging them can become a frequent task.

This layout is separate from the disassembly-time one so if you want to persist a
custom debugger layout, you need to save it during the debug session.

More info: Desktops1 in the IDA Help.

https://hex-rays.com/blog/igors-tip-of-the-week-22-ida-desktop-layouts/
https://hex-rays.com/products/ida/support/idadoc/1418.shtml

#23: Graph view

https://hex-rays.com/blog/igors-tip-of-the-week-23-graph-view/

Graph view is the default disassembly representation in IDA GUI and is probably what most IDA users use every day. However,
it has some lesser-known features that can improve your workflow.

Parts of the graph

The graph consists of nodes (blocks) and edges (arrows between blocks). Each
node roughly corresponds to a basic block.

a basic block is a straight-line code sequence with no branches in except to the
entry and no branches out except at the exit.
(from Wikipedia1)

Edges indicate code flow between nodes and their color changes depending on the
type of code flow:

• conditional jumps/branches have two outgoing edges: green for branch taken and
 red for branch not taken (i.e. fall through to next address);
• other kind of edges are blue;
• edges which go backwards in the graph (which usually means they’re part of a loop)
 are thicker in width.

Keyboard controls

• W to zoom out so the whole graph fits in the visible window area;
• 1 to zoom back to 100%;
• Ctrl-Up moves to the parent node;
• Ctrl-Down moves to the child node
 (if there are several candidates in either case, a selector is displayed)

Igor’s tip of the week - season 01

22 Jan 2021

1 https://en.wikipedia.org/wiki/Basic_block

Mouse controls

Besides the usual clicking around, a few less obvious mouse actions are possible:

• double-click an edge to jump to the other side of it or hover to preview the target (source) node;
• click and drag the background to pan the whole graph in any directions;
• use the mouse wheel to scroll the graph vertically (up/down);
• Alt+wheel to scroll horizontally (left/right);
• Ctrl+wheel to zoom in/out

Rearranging and grouping the nodes

If necessary, you can move some nodes around by dragging their titles. Edges can
also be moved by dragging their bending points. Use “Layout graph” from the context
menu to go back to the initial layout.

Big graphs can be simplified by grouping:

1. Select several nodes by holding down Ctrl and clicking the titles of multiple nodes
 or by click-dragging a selection box. The selected nodes will have a di�erent color
 from others (cyan in default color scheme);
2. Select “Group nodes” from the context menu and enter the text for the new node.
 IDA will replace selected nodes with the new one and rearrange the graph;
3. You can repeat the process as many times as necessary, including grouping
 already-grouped nodes;
4. Created groups can be expanded again temporarily or ungrouped completely,
 going back to separate nodes. Use the context menu or new icons in the group
 node’s title bar for this.

https://hex-rays.com/blog/igors-tip-of-the-week-23-graph-view/
https://en.wikipedia.org/wiki/Basic_block

#23: Graph view

https://hex-rays.com/blog/igors-tip-of-the-week-23-graph-view/

Igor’s tip of the week - season 01

22 Jan 2021

2 https://www.hex-rays.com/products/ida/support/idadoc/42.shtml

More info: Graph view in IDA Help2 (also available via F1 in IDA).

https://hex-rays.com/blog/igors-tip-of-the-week-23-graph-view/
https://www.hex-rays.com/products/ida/support/idadoc/42.shtml

#24: Renaming registers

https://hex-rays.com/blog/igors-tip-of-the-week-24-renaming-registers/

While register highlighting can help tracking how a register is used in the code, some-
times it’s not quite su�cient, especially if multiple registers are used by a complicat-
ed piece of code. In such situation you can try register renaming.

To rename a register:

• place the cursor on it and press N or Enter, or
• double-click it

A dialog appears where you can specify:

• new name to be used in the disassembly;
• comment to be shown at the place of the new name’s definition;
• range of addresses where to use the name.

The address range defaults to the current function boundaries but you can either
edit them manually or select a range before renaming (this can be tricky since the
cursor needs to be on the register). The new range cannot cross function boundaries
(registers can be renamed only inside a function). The new name and the comment
are printed at the start of the specified range.

Even if you don’t rename registers yourself, you may encounter them in your
databases. For example, the DWARF plugin can use the information available in the
DWARF debug info to rename and comment registers used for storing local variables
or function arguments.

To undo renaming and revert back to the canonical register name, rename it to an
empty string.

See also: Rename register1 in the IDA Help.

Igor’s tip of the week - season 01

29 Jan 2021

1 https://www.hex-rays.com/products/ida/support/idadoc/1346.shtml

https://hex-rays.com/blog/igors-tip-of-the-week-24-renaming-registers/
https://www.hex-rays.com/products/ida/support/idadoc/1346.shtml

#25: Disassembly options

https://hex-rays.com/blog/igors-tip-of-the-week-25-disassembly-options/

By default IDA’s disassembly listing shows the most essential information: disassembled instructions with operands,
comments, labels. However, the layout of this information can be tuned, as well as additional information added. This can be
done via the Disassembly Options tab available via Options > General… menu (or Alt-O, G).

Text and Graph views options

If you open the options dialog in graph mode, you should have something like the
following:

And if you do it in text mode (use Space to switch), it will be di�erent:

As you may notice, some options are annotated with (graph) or (non-graph), denoting
the fact that IDA keeps two sets of options for di�erent modes of disassembly. To
make the graphs look nicer, the defaults are tuned so that the nodes are relatively
narrow, while the text mode can use the full width of the window and is spaced out
more. However, you can still tweak the options of either mode to your preference and
even save them as a named or default desktop layout1.

Line prefixes

One example of a setting which is di�erent in text and graph modes is “Line prefixes”
(enabled in text mode, disabled in graph mode). Prefix is the initial part of the disas-
sembly line which indicates its address (e.g. .text:00416280). For example, you can
enable it in the graph too or disable display of the segment name to save space.

Or you can show o�sets from start of the function instead of full addresses:

This can be convenient because you always know which function you’re currently
analyzing.

Igor’s tip of the week - season 01

05 Feb 2021

1 https://www.hex-rays.com/blog/igors-tip-of-the-week-22-ida-desktop-layouts/

https://hex-rays.com/blog/igors-tip-of-the-week-25-disassembly-options/
https://www.hex-rays.com/blog/igors-tip-of-the-week-22-ida-desktop-layouts/

#26: Disassembly options 2

https://hex-rays.com/blog/igors-tip-of-the-week-26-disassembly-options-2/

Continuing from last week1, let’s discuss other disassembly options you may
want to change. Here’s the options page again:

Disassembly line parts

This group is for options which control the content of the main line itself. Here is an
example of a line with all options enabled:

The marked up parts are:

1. The line prefix (address of the line).
2. The stack pointer value or delta (relative to the value at the entry point). Enabling
 this can be useful when debugging problems like “sp-analysis failed”, “positive sp v
 value has been detected”, or “call analysis failed”.
3. Opcode bytes. The number entered in the “Number of opcode bytes” specifies the
 number displayed on a single line at most. If the instruction is longer, the rest is
 printed on the second line. If you prefer to truncate the extra bytes, enter a negative
 number (e.g. -4 will display 4 bytes at most, the rest will be truncated).
4. Comments for instructions with a short description of what the instruction is doing
 (may not be available for all processors or all instructions).

Display disassembly lines

This group of options control display of lines other than the actual line of the disas-
sembly for a given address (main line).

1. Empty lines: this prints additional empty lines to make disassembly more readable,
 especially in text mode (e.g. between functions or before labels). Turn it o� to fit
 more code on screen.
2. Borders between data/code: displays the border line (;------------) whenever
 there is a stop in the execution flow (e.g. after an unconditional jump or a call to a
 non-returning function).
3. Basic block boundaries: adds one more empty line at the end of each basic block
 (i.e. after a call or a branch).
4. Source line numbers: displays source file name and line number if this information
 is available in the database (e.g. imported from the DWARF debug information).
5. Try block lines: enables or disables display of information about exception
 handling recovered by parsing the exception handling metadata in the binary.

Igor’s tip of the week - season 01

12 Feb 2021

1 https://www.hex-rays.com/blog/igors-tip-of-the-week-25-disassembly-options/

https://hex-rays.com/blog/igors-tip-of-the-week-26-disassembly-options-2/
https://www.hex-rays.com/blog/igors-tip-of-the-week-25-disassembly-options/

#27: Fixing the stack pointer

https://hex-rays.com/blog/igors-tip-of-the-week-27-fixing-the-stack-pointer/

As explained in Simplex method in IDA Pro1, having correct stack change information is essential for correct analysis. This is
especially important for good and correct decompilation. While IDA tries its best to give good and correct results (and we’ve
made even more improvements since 2006), sometimes it can still fail (often due to wrong or conflicting information). In this
post we’ll show you how to detect and fix problems such as:

Both examples are from the 32-bit build of notepad.exe from Windows 10 (version 10.0.17763.475) with PDB symbols from
Microsoft’s public symbol server applied.

Note: in many cases the decompiler will try to recover and still produce reasonable decompilation but if you need to be 100%

Detecting the source of the problem

The first steps to resolve them are usually:

1. Switch to the disassembly view (if you were in the decompiler);
2. Enable “Stack pointer” under “Disassembly, Disassembly line parts” in Options >
 General…;
3. Look for unusual or unexpected changes in the SP value (actually it’s the SP delta
 value) now added before each instruction.

To detect “unusual changes” we first need to know what is “usual”. Here are some
examples:

• push instructions should increase the SP delta by the number of pushed bytes (e.g.
 push eax by 4 and push rbp by 8)
• conversely, pop instructions decrease it by the same amount
• call instructions usually either decrease SP to account for the pushed arguments
 (__stdcall or __thiscall functions on x86), or leave it unchanged to be decreased
 later by a separate instruction
• the values on both ends of a jump (conditional or unconditional) should be the same
• the value at the function entry and return instructions should be 0
• between prolog and epilog the SP delta should remain the same with the exception
 of small areas around calls where it can increase by pushing arguments but then
 should return back to “neutral” before the end of the basic block.

In the first example, we can see that loc_406F9D has the SP delta of 00C and the first
jump to it is also 00C, however the second one is 008. So the problem is likely in that
second block. Here it is separately:

Igor’s tip of the week - season 01

19 Feb 2021

1 https://www.hex-rays.com/blog/simplex-method-in-ida-pro/

“sp-analysis failed” “positive sp value has been detected”

https://hex-rays.com/blog/igors-tip-of-the-week-27-fixing-the-stack-pointer/
https://www.hex-rays.com/blog/simplex-method-in-ida-pro/

#27: Fixing the stack pointer

https://hex-rays.com/blog/igors-tip-of-the-week-27-fixing-the-stack-pointer/

00C mov ecx, o�set dword_41D180
00C call _TraceLoggingRegister@4 ; TraceLoggingRegister(x)
008 push o�set _TraceLogger__GetInstance____2____dynamic_atexit_destructor_for__s_instance__ ; void (__cdecl *)()
00C call _atexit
00C pop ecx
008 push ebx
00C call __Init_thread_footer
00C pop ecx
008 jmp short loc_406F9D

Fixing wrong stack deltas

How to actually fix the wrong delta depends on the specific situation but generally
there are two approaches:

1. Fix just the place(s) where things go wrong. For this, press Alt-K (Edit > Functions >
 Change stack pointer…) and enter the correct amount of the SP change. In the first
 example it should be 0 (since the function is not using any stack arguments) and in
 the second 12 or 0xc. Often this is the only option for indirect calls.
2. If the same function called from multiple places causes stack unbalance issues,
 edit the function’s properties (Alt-P or Edit > Functions > Edit function…) and
 change the “Purged bytes” value.

This simple example shows that even having debug symbols does not guarantee
100% correct results and why giving override options to the user is important.

We can see that 00C changes to 008 after the call to _TraceLoggingRegister@4. On
the first glance it makes sense because the @4 su�x denotes __stdcall function2
with 4 bytes of arguments (which means it removes 4 bytes from the stack). However,
if you actually go inside and analyze it, you’ll see that it does not use stack arguments
but the register ecx. Probably the file has been compiled with Link-time Code
Generation3 which converted __stdcall to __fastcall to speed up the code.

In the second case the disassembly looks like following:

Here, the problem is immediately obvious: the delta becomes negative after the call. It
seems IDA decided that the function is subtracting 0x14 bytes from the stack while
there are only three pushes (3*4 = 12 or 0xC). You can also go inside StringCopy-
WorkerW and observe that it ends with retn 0Ch – a certain indicator that this is the
correct number.

Igor’s tip of the week - season 01

19 Feb 2021

2 https://docs.microsoft.com/en-us/cpp/cpp/stdcall
3 https://docs.microsoft.com/en-us/cpp/build/reference/ltcg-link-time-code-generation

https://hex-rays.com/blog/igors-tip-of-the-week-27-fixing-the-stack-pointer/
https://docs.microsoft.com/en-us/cpp/cpp/stdcall
https://docs.microsoft.com/en-us/cpp/build/reference/ltcg-link-time-code-generation

#28: Functions list

https://hex-rays.com/blog/igors-tip-of-the-week-28-functions-list/

The Functions list is probably one of the most familiar features of IDA’s default desktop layout. But even if you use it every day,
there are things you may not be aware of.

Modal version

Available via Jump > Jump to function… menu, or the Ctrl-P shortcut, the modal
dialog lets you see the full width of the list as well as do some quick navigation, for
example:

1. To jump to the current function’s start, use Ctrl-P, Enter ;
2. To jump to the previous function, use Ctrl-P, Up, Enter (also available as Jump-
PrevFunc action: default shortcut is Ctrl-Shift-Up);
3. To jump to the next function, use Ctrl-P, Down, Enter (also available as JumpNext-
Func action: default shortcut is Ctrl-Shift-Down).

Igor’s tip of the week - season 01

26 Feb 2021

1 https://www.hex-rays.com/products/ida/support/idadoc/586.shtml

Columns

As can be seen on the second screenshot, the Functions list has many more columns than Function name which is often the only one
visible. They are described in the corresponding help topic1. By clicking on a column you can ask IDA to sort the whole list on that
column. For example, you can sort the functions by size to look for largest ones – the bigger the function, the more chance it has a
bug; or you may look for a function with the biggest Locals area since it may have many bu�ers on the stack which means potential
overflows.

If you sort or filter the list, you may see the following message in the Output window:

Caching 'Functions window'... ok

Because sorting requires the whole list, IDA has to fetch it and re-sort on almost any change in the database since it may change the
list. On big databases this can become quite slow so once you don’t need sorting anymore, it’s a good idea to use “Unsort” from the
context menu.

Synchronization

The list can be synchronized with the disassembly by selecting “Turn on synchroni-
zation” from the context menu. Once enabled, the list will scroll to the current
function as you navigate in the database. You can also turn it o� if you prefer to see
a specific function in the list no matter where you are in the listing.

https://hex-rays.com/blog/igors-tip-of-the-week-28-functions-list/
https://www.hex-rays.com/products/ida/support/idadoc/586.shtml

#28: Functions list

https://hex-rays.com/blog/igors-tip-of-the-week-28-functions-list/

Folders

Since IDA 7.5, folders can be used to organize your functions. To enable, select “Show folders” in the context menu, then “Create folder
with items…” to group selected items into a folder.

Igor’s tip of the week - season 01

26 Feb 2021

2 https://www.hex-rays.com/products/ida/tech/flirt/
3 https://www.hex-rays.com/products/ida/lumina/
4 https://www.hex-rays.com/products/decompiler/manual/cmd_mark.shtml
5 https://www.hex-rays.com/products/ida/support/idadoc/1361.shtml

Multi-selection

By selecting multiple items you can perform some operations on all of them, for example:

• Delete function(s)…: deletes the selected functions by removing the function info (name, bounds) from the database. The instructions
 previously belonging to the functions remain so this can be useful, for example, for combining incorrectly split functions.
• Add breakpoint: adds a breakpoint to the first instruction of all selected functions. This can be useful for discovering which functions
 are executed when you trigger a specific functionality in the program being debugged.
• Lumina: you can push or pull metadata only for selected functions.

Colors & styles

Some functions in the list may be colored. In most cases the colors match the legend in the navigation bar:

• Cyan: Library function (i.e. a function recognized by a FLIRT signature2 as a compiler runtime library function)
• Magenta/Fuchsia: an external function thunk, i.e. a function implemented in an external module (often a DLL or a shared object)
• Lime green: a function with metadata retrieved from the Lumina database3

But there are also others:

• Light green: function marked as decompiled4

• Other: function with manually set color (via Edit function… or a plugin/script)

You may also see functions marked in bold. These are functions which have a defined prototype (i.e types of arguments, return value
and calling convention). The prototype may be defined by the user (Y hotkey5), or set by the loader or a plugin (e.g. from the DWARF
or PDB debug information).

https://hex-rays.com/blog/igors-tip-of-the-week-28-functions-list/
https://www.hex-rays.com/products/ida/tech/flirt/
https://www.hex-rays.com/products/ida/lumina/
https://www.hex-rays.com/products/decompiler/manual/cmd_mark.shtml
https://www.hex-rays.com/products/ida/support/idadoc/1361.shtml

#29: Color up your IDA

https://hex-rays.com/blog/igors-tip-of-the-week-29-color-up-your-ida/

For better readability, IDA highlights various parts of the disassembly listing using di�erent colors; however these are not set
in stone and you can modify most of them to suit your taste or situation. Let’s have a look at the di�erent options available for
changing colors in IDA.

Themes

In case you are not aware, IDA supports changing the color scheme used for the UI
(windows, controls, views and listings). The default theme uses light background but
there are also two dark themes available. You can change the theme used via
Options > Colors… (“Current theme” selector). Each theme then can be customized
further by editing the colors in the tabs below. In the Disassembly tab, you can either
select items from the dropdown, or click on them in the listing, then change the color
by clicking the corresponding button.

If you prefer editing color values directly, you can update many of them at once or
even create a complete custom theme by following the directions on the
“CSS-based styling” page.

Igor’s tip of the week - season 01

05 Mar 2021

Coloring graph nodes

In the Graph View, you can color whole nodes (basic blocks) by clicking the first icon
(Set node color) in the node’s header.

After choosing the color, all instructions in the block will be colored and it will also be
shown with the corresponding color in the graph overview.

Coloring functions

Instead of (or in addition to) marking up single instructions or basic blocks you can
also color whole functions. This can be done in the Edit Function (+) dialog by
clicking the corresponding button.

Changing the color of a function colors all instructions contained in it (except those
colored individually), as well as its entry in the Functions list.

https://hex-rays.com/blog/igors-tip-of-the-week-29-color-up-your-ida/

#30: Quick views

https://hex-rays.com/blog/igors-tip-of-the-week-30-quick-views/

IDA has three shortcuts as an alternative to some menus which could be cumbersome to navigate.

Quick view

Quick debug view

Probably the most commonly used, it is triggered by the shortcut Ctrl+1 and shows
the items under the View > Open subviews menu.

It can be especially useful for opening views which have no dedicated shortcut such
as Notepad (although you can always assign a custom one via the Shortcut editor1).

Most useful during a debugging session, this one allows you to bypass navigating to
the Debugger > Debugger windows menu by simply pressing Ctrl+2.

Igor’s tip of the week - season 01

12 Mar 2021

1 https://www.hex-rays.com/blog/igor-tip-of-the-week-02-ida-ui-actions-and-where-to-find-them/

Quick debug view

Last but not least, Ctrl+3 opens the list of plugin menu items listed under the Edit >
Plugins menu, allowing you to quickly invoke a specific plugin. Please note that this
list does not necessarily include all installed plugins; some plugins add menu items
elsewhere or may not have a menu item at all and work in an automatic fashion.

https://hex-rays.com/blog/igors-tip-of-the-week-30-quick-views/
https://www.hex-rays.com/blog/igor-tip-of-the-week-02-ida-ui-actions-and-where-to-find-them/

#31: Hiding and Collapsing

https://hex-rays.com/blog/igors-tip-of-the-week-31-hiding-and-collapsing/

You may have come across the menu items View > Hide, Unhide but possibly never used them.

These commands allow you to hide, or collapse and unhide/uncollapse parts of IDA’s output. They can be used in the following
situations:

Hiding instructions or data items

Hiding whole functions

To make your database more compact and reduce clutter, you can opt to hide or
replace some parts of the listing by short text:

1. Select some instructions or data items
2. Invoke View > Hide (or press Ctrl+Numpad-)
3. Enter the text with which to replace the selected area (and optionally pick a color)

The instructions/data are replaced by the entered text but are not removed from the
database; you can reveal them using View > Unhide (or Ctrl+Numpad+).

You can also hide or collapse whole functions by using the Hide command while the
cursor is on the function’s name:

You may have already seen the “COLLAPSED FUNCTION” text for library functions
detected by the FLIRT signatures (colored cyan in the function list and navigation
bar). The actual implementation of library functions is rarely important for analyzing
the program’s code so IDA collapses them to not distract the user.

Igor’s tip of the week - season 01

19 Mar 2021

Hiding structures and enums

Structure or enum definitions can be collapsed and uncollapsed similarly to
functions.

Terse struct representation

When defining structure instances in data, IDA will by default try to display them in
terse form, with everything on one line. By using Unhide, you can have it printed in
full, or verbose form, with each field on separate line and a comment with the field
name.

Conversely, you can use Hide to collapse a structure instance into a terse form (this
may not work in some cases due to the specific structure’s layout).

https://hex-rays.com/blog/igors-tip-of-the-week-31-hiding-and-collapsing/

#31: Hiding and Collapsing

https://hex-rays.com/blog/igors-tip-of-the-week-31-hiding-and-collapsing/

Collapsing blocks in decompiler

The decompiler also has similar but separate pair of actions. They are available in the context menu or via the Numpad- and Numpad+
hotkeys. You can collapse compound operators, as well as the variable declaration block at the start of the function.

Igor’s tip of the week - season 01

19 Mar 2021

1 https://hex-rays.com/products/ida/support/idadoc/599.shtml
2 https://hex-rays.com/products/ida/support/idadoc/600.shtml
3 https://www.hex-rays.com/products/decompiler/manual/cmd_collapse.shtml

More info:

Hide1 and Unhide2 (IDA)

Collapse/uncollapse item3 (Decompiler)

https://hex-rays.com/blog/igors-tip-of-the-week-31-hiding-and-collapsing/
https://hex-rays.com/products/ida/support/idadoc/599.shtml
https://hex-rays.com/products/ida/support/idadoc/600.shtml
https://www.hex-rays.com/products/decompiler/manual/cmd_collapse.shtml

#32: Running scripts

https://hex-rays.com/blog/igors-tip-of-the-week-32-running-scripts/

Scripting allows you to automate tasks in IDA which can be repetitive or take a long time to do manually. We previously covered1
how to run them in batch (headless) mode, but how can they be used interactively?

Script snippets

Command Line Interface (CLI)

File > Script Command… (Shift+F2)

Although this dialog is mainly intended for quick prototyping and database-specific
snippets, you can save and load scripts from external files via the “Export” and
“Import” buttons. There is some basic syntax highlighting but it’s not a replacement
for a full-blown IDE. Another useful feature is that the currently selected snippet can
be executed using the Ctrl+Shift+X shortcut (“SnippetsRunCurrent” action) even

The input line at the bottom of IDA’s screen can be used for executing small one-line
expressions in IDC or Python (the interpreter can be switched by clicking on the
button).

While somewhat awkward to use for bigger tasks, it has a couple of unique features:

• the result of entered expression is printed in the Output Window (unless inhibited
 with a semicolon). In case of IDC, values are printed in multiple numeric bases and
 objects are pretty-printed recursively.
• It supports limited Tab completion2.

Recent scripts

The scripts which were executed through the “Script file…” command are remem-
bered by IDA and can be executed again via the Recent Scripts list (View > Recent
scripts, or Alt+F9). You can also invoke an external editor (configured in Options >
General…, Misc tab) to edit the script before running.

Igor’s tip of the week - season 01

26 Mar 2021

1 https://www.hex-rays.com/blog/igor-tip-of-the-week-08-batch-mode-under-the-hood/
2 https://www.hex-rays.com/blog/implementing-command-completion-for-idapython/
3 https://hex-rays.com/products/ida/support/download/

Command Line Interface (CLI)

If you already have a stand-alone script file and simply want to run it, File > Script file.. (Alt+F7) is probably the best and quickest
solution. It supports both IDC and Python scripts.

Command Line Interface (CLI)

IDA ships with some example scripts which can be found in “idc” directory for IDC and “python/examples” for IDAPython. There are
also some user-contributed scripts in the download area3.

https://hex-rays.com/blog/igors-tip-of-the-week-32-running-scripts/
https://www.hex-rays.com/blog/igor-tip-of-the-week-08-batch-mode-under-the-hood/
https://www.hex-rays.com/blog/implementing-command-completion-for-idapython/
https://hex-rays.com/products/ida/support/download/

#33: IDA’s user directory (IDAUSR)

https://hex-rays.com/blog/igors-tip-of-the-week-33-idas-user-directory-idausr/

The user directory is a location where IDA stores some of the global settings and which can be used for some additional
customization.

Default location

On Windows: %APPDATA%/Hex-Rays/IDA Pro

On Linux and Mac: $HOME/.idapro

For brevity, we’ll refer to this path as $IDAUSR in the following text.

Igor’s tip of the week - season 01

02 Apr 2021

1 https://www.hex-rays.com/blog/igors-tip-of-the-week-22-ida-desktop-layouts/
2 https://www.hex-rays.com/blog/igor-tip-of-the-week-02-ida-ui-actions-and-where-to-find-them/
3 https://twitter.com/HexRaysSA/status/1341745224037634049

Contents/settings

The directory is used to store the processor module caches (proccache.lst and proccache64.lst) as well as the trusted database
caches (trusted_i64_list.bin and trusted_idb_list.bin). Trusted databases are those that were authorized by the user to be
run under debugger. The cache is used to prevent accidental execution of unknown binaries (for example, a database provided by a
third party can contain a malicious executable path so it’s not run without confirmation by default).

On Linux and Mac, the user directory also contains the pseudo registry file ida.reg. It holds global IDA settings which are stored in
the registry on Windows (for example, the custom desktop layouts1).

If you modify or add shortcuts2, modifications are stored in shortcuts.cfg in this directory.

Plugins

The user directory (more specifically, $IDAUSR/plugins) can be used for installing plugins instead of IDA’s installation directory. This
has several advantages:

1. No need for administrative permissions on Windows;
2. The plugins can be shared by multiple IDA installs or versions, so there’s no need to reinstall plugins in new location when installing
 a new IDA version;
3. plugins in the user directory can override plugins with the same name in IDA’s directory so this feature can be used to replace
 plugins shipped with IDA.

Both native (C++) and scripted (Python/IDC) plugins can be used this way.

Config files

To change some default options, you sometimes need to edit configuration files in IDA’s cfg subdirectory (for example, ida.cfg or
hexrays.cfg). Instead of editing them in-place, you can extract only the options you need to change and put them into the
same-named file in $IDAUSR/cfg. Unlike the plugins, the config files don’t override IDA’s files completely but are applied additionally.
For example, to enable synchronization and split view3 for the decompiler, put the following lines in $IDAUSR/cfg/hexrays.cfg:

//--
PSEUDOCODE_SYNCED=YES
PSEUDOCODE_DOCKPOS=DP_RIGHT
//--

Other addons

The user directory can also be used to provide additional loaders, processor modules, type libraries and signatures. IDA will scan the
following directories for them:

$IDAUSR/loaders
$IDAUSR/procs
$IDAUSR/til/{processor}
$IDAUSR/sig/{processor}

https://hex-rays.com/blog/igors-tip-of-the-week-33-idas-user-directory-idausr/
https://www.hex-rays.com/blog/igors-tip-of-the-week-22-ida-desktop-layouts/
https://www.hex-rays.com/blog/igor-tip-of-the-week-02-ida-ui-actions-and-where-to-find-them/
https://twitter.com/HexRaysSA/status/1341745224037634049

#33: IDA’s user directory (IDAUSR)

https://hex-rays.com/blog/igors-tip-of-the-week-33-idas-user-directory-idausr/

Igor’s tip of the week - season 01

02 Apr 2021

4 https://www.hex-rays.com/blog/igor-tip-of-the-week-07-ida-command-line-options-cheatsheet/
5 https://www.hex-rays.com/products/ida/support/idadoc/1375.shtml

IDAPython

If a file named idapythonrc.py is present in the user directory, it will be parsed and executed at the end of IDAPython’s initialization.
This allows you, for example, to add custom IDAPython functions, preload some commonly used scripts, or do any other customization
that’s more convenient to do in Python code.

Overriding the user directory location

If you prefer to use a custom location for user settings or need several sets of such directories, you can set the IDAUSR environment
variable to another path (or even a set of paths) before running IDA.

Overriding the user directory location

If you copied files to the correct location but IDA does not seem to pick them up, you can use the -z commandline switch4 to confirm
that it’s finding your file. For example, the following command line enables debug output of processing of all types of customizations
(plugins, processor modules, loaders, FLIRT signatures, config files) and also copies the debug output to a log file:

ida -zFC -Lida.log file.bin

Among the output, you should see lines similar to following:

Scanning plugins directory C:\Users\Igor\AppData\Roaming\Hex-Rays\IDA Pro\plugins, for *.dll.
Scanning plugins directory C:\Users\Igor\AppData\Roaming\Hex-Rays\IDA Pro\plugins, for *.idc.
Scanning plugins directory C:\Program Files\IDA Pro 7.6\plugins, for *.dll.
Scanning plugins directory C:\Program Files\IDA Pro 7.6\plugins, for *.idc.
<...>
Scanning directory 'C:\Users\Igor\AppData\Roaming\Hex-Rays\IDA Pro\loaders' for loaders

So you can verify whether IDA is looking in the expected location.

For even more details on this feature, please check Environment variables5 (IDAUSR section).

https://hex-rays.com/blog/igors-tip-of-the-week-33-idas-user-directory-idausr/
https://www.hex-rays.com/blog/igor-tip-of-the-week-07-ida-command-line-options-cheatsheet/
https://www.hex-rays.com/products/ida/support/idadoc/1375.shtml

#34: Dummy names

https://hex-rays.com/blog/igors-tip-of-the-week-34-dummy-names/

In IDA’s disassembly, you may have often observed names that may look strange and cryptic on first sight: sub_73906D75,
loc_40721B, off_40A27C and more. In IDA’s terminology, they’re called dummy names. They are used when a name is required
by the assembly syntax but there is nothing suitable available, for example the input file has no debug information (i.e. it has
been stripped), or when referring to a location not present in the debug info. These names are not actually stored in the
database but are generated by IDA on the fly, when printing the listing.

Dummy name prefixes

The dummy name consists of a type-dependent prefix and a unique su�x which is
usually address-dependent. The following prefixes are used in IDA:

• sub_ instruction, subroutine(function) start
• locret_ a return instruction
• loc_ other kind of instruction
• off_ data, contains an o�set(pointer) value
• seg_ data, contains a segment address value
• asc_ data, start of a string literal
• byte_ data, byte
• word_ data, 16-bit
• dword_ data, 32-bit
• qword_ data, 64-bit
• byte3_ data, 3-byte
• xmmword_ data, 128-bit
• ymmword_ data, 256-bit
• packreal_ data, packed real
• flt_ floating point data, 32-bit
• dbl_ floating point data, 64-bit
• tbyte_ floating point data, 80-bit
• stru_ structure
• custdata_ custom data type
• algn_ alignment directive
• unk_ unexplored (undefined, unknown) byte

Igor’s tip of the week - season 01

09 Apr 2021

Name su�xes

The default su�x is the linear (aka e�ective) address of the item to which the dummy
name is attached. However, this is not the only possibility. By using the Options >
Name representation… dialog, you can choose something di�erent.

Dummy name representation dialog

The options from the first half can be especially useful when dealing with segmented
programs such as 16-bit DOS software; instead of a global linear address you can
see the segment and the o�set inside it so, for example, it is evident when the
destination is in another segment.

DOS program when using “segment name & o�set from the segment base” repre-
sentation

Because the prefixes are treated in a special way by IDA, they’re reserved and cannot be used in user-defined names. If you try to use
such a name, you’ll get an error from IDA:

Warning 328: can't rename byte as 'sub_x' because the name has a reserved prefix.
Warning: can’t rename byte because the name has a reserved prefix

A possible workaround is to add an underscore at the start so the prefix is di�erent. But if you want to get rid of an existing name and
have IDA use a dummy name again, just delete it (rename to an empty string).

https://hex-rays.com/blog/igors-tip-of-the-week-34-dummy-names/

#34: Dummy names

https://hex-rays.com/blog/igors-tip-of-the-week-34-dummy-names/

Other prefixes

In addition to dummy names, there are two other kinds of autogenerated names that
are used in IDA:

Stack variables (var_) and arguments (arg_).
String literal names generated from their text (e.g. aException for “exception”)
The stack prefixes are hardcoded and not configurable but the latter can be config-
ured in Options > General…, Strings tab.

Strings options

Unlike the dummy names, these names are stored in the database marked as
autogenerated so their prefixes are not considered reserved and you can use them
in custom names.

Igor’s tip of the week - season 01

09 Apr 2021

https://hex-rays.com/blog/igors-tip-of-the-week-34-dummy-names/

#35: Demangled names

https://hex-rays.com/blog/igors-tip-of-the-week-35-demangled-names/

Name mangling (also called name decoration) is a technique used by compilers to implement some of the features required
by the language. For example, in C++ it is used to distinguish functions with the same name but di�erent arguments (function
overloading), as well as to support namespaces, templates, and other purposes.

Mangled names often end up in the final binary and, depending on the compiler, may be non-trivial to understand for a human
(a simple example: “operator new” could be encoded as ??2@YAPAXI@Z or _Znwm). While these cryptic strings can be decoded
by a compiler-provided utility such as undname (MSVC) or c++filt (GCC/Clang), it’s much better if the disassembler does it
for you (especially if you don’t have the compiler installed). This process of decoding back to a human-readable form is called
demangling. IDA has out-of-box support for demangling names for the following compilers and languages:

• Microsoft (Visual C++)
• Borland (C++, Pascal, C++ Builder, Delphi)
• Watcom (C++)
• Visual Age (C++)
• DMD (D language)
• GNU mangling (GCC, Clang, some commercial compilers)
• Swift

You do not need to pick the compiler manually; IDA will detect it from the name format and apply the corresponding demangler
automatically.

Demangled name options

By default, IDA uses a comment to show the result of demangling, meaning that
every time a mangled name is used, IDA will print a comment with the result of
demangling. For example, ?FromHandle@CGdiObject@@SGPAV1@PAX@Z demangles to
CGdiObject::FromHandle(void *), which is printed as a comment:

If you prefer, you can show the demangled result in place of the mangled name
instead of just a comment. This can be done in the Options > Demangled names…
dialog:

Igor’s tip of the week - season 01

16 Apr 2021

https://hex-rays.com/blog/igors-tip-of-the-week-35-demangled-names/

#35: Demangled names

https://hex-rays.com/blog/igors-tip-of-the-week-35-demangled-names/

Name simplification

Some deceptively simple-looking names may end up very complicated after compilation, especially when templates are involved. For
example, a simple std::string1 from STL actually expands to

std::basic_string<char,std::char_traits<char>,std::allocator<char>>

To ensure interoperability, the compiler has to preserve these details in the mangled name, so they reappear on demangling; however,
such implementation details are usually not interesting to a human reader who would prefer to see a simple std::string again. This is
why IDA implements name simplification as a post-processing step. Using the rules in the file cfg/goodname.cfg, IDA applies them to
transform a name like

std::basic_string<char,struct std::char_traits<char>,class std::allocator<char> > & __thiscall std::ba-
sic_string<char,struct std::char_traits<char>,class std::allocator<char> >::erase(unsigned int,unsigned int)

into

std::string & std::string::erase(unsigned int,unsigned int)

which is much easier to read and understand.

IDA ships with rules for most standard STL classes but you can add custom ones too. Read the comments inside goodname.cfg for
the description of how to do it.

More info: Demangled names in IDA Help.

Igor’s tip of the week - season 01

16 Apr 2021

1 https://en.cppreference.com/w/cpp/string
2 https://www.hex-rays.com/products/ida/support/idadoc/611.shtml

Short and long names

The buttons “Setup short names” and “Setup long names” allow you to modify the
behavior of the built-in demangler in two common situations. The “short” names are
used in contexts where space is at premium: references in disassembly, lists of
functions and so on. “Long” names are used in other situations, for example when
printing a comment at the start of the function. By using the additional options dialog,
you can select what parts of the demangled name to show, hide, or shorten to make
it either more compact or more verbose.

https://hex-rays.com/blog/igors-tip-of-the-week-35-demangled-names/
https://en.cppreference.com/w/cpp/string
https://www.hex-rays.com/products/ida/support/idadoc/611.shtml

#36: Working with list views in IDA

https://hex-rays.com/blog/igors-tip-of-the-week-36-working-with-list-views-in-ida/

List views (also called choosers or table views) are used in many places in IDA to show lists of di�erent kind of information. For
example, the Function list1 we’ve covered previously is an example of a list view. Many windows opened via the View > Open
subviews menu are list views:

• Exports
• Imports
• Names
• Strings
• Segments
• Segment registers
• Selectors
• Signatures
• Type libraries
• Local types
• Problems
• Patched bytes

Many modal dialogs from the Jump menu (such as those for listing Cross references2) are also examples of list views. Because
they are often used to select or choose one entry among many, they may also be called choosers.

List view can also be part of another dialog or widget, for example the shortcut list in the Shortcut editor3. These are called
“embedded choosers” in the IDA SDK.

All list views share common features which we discuss below.

Text search

You can search for arbitrary text in the contents of the list view by using Alt-T to
specify the search string and Ctrl-T to find the next occurrence.

Igor’s tip of the week - season 01

23 Apr 2021

1 https://www.hex-rays.com/blog/igors-tip-of-the-week-28-functions-list/
2 https://www.hex-rays.com/blog/igor-tip-of-the-week-16-cross-references/
3 https://www.hex-rays.com/blog/igor-tip-of-the-week-02-ida-ui-actions-and-where-to-find-them/

Incremental search

Simply start typing to navigate to the closest item which starts with the typed text.
The text will appear in the status bar. Use Backspace to erase incorrectly typed
letters and Ctrl-Enter to jump to the next occurrence of the same prefix (if any).

Columns

Each list view has column headers at the top. In most (not all) of them, you can hide specific columns by using “Hide column” or
“Columns…” from the context menu.

Similarly to the standard list views in most OSes, you can resize columns by dragging the delimiters between them or auto-size the
column to fit the longest string in it by double-clicking the right delimiter.

https://hex-rays.com/blog/igors-tip-of-the-week-36-working-with-list-views-in-ida/
https://www.hex-rays.com/blog/igors-tip-of-the-week-28-functions-list/
https://www.hex-rays.com/blog/igor-tip-of-the-week-16-cross-references/
https://www.hex-rays.com/blog/igor-tip-of-the-week-02-ida-ui-actions-and-where-to-find-them/

#36: Working with list views in IDA

https://hex-rays.com/blog/igors-tip-of-the-week-36-working-with-list-views-in-ida/

Sorting

The list view can be sorted by clicking on a column’s header. The sorting indicator
shows the direction of sorting (click it again to switch the direction). Because IDA
needs to fetch the whole list of items to sort them, this can be slow in big lists so a
reminder with the text “Caching <window>…” is printed in the Output window each
time the list is updated and re-sorted. To improve the performance, you can disable
sorting by using “Unsort” from the context menu.

Igor’s tip of the week - season 01

23 Apr 2021

4 https://www.hex-rays.com/products/ida/support/idadoc/427.shtml

Filtering

A quick filter box can be opened by pressing Ctrl-F. Type some text in it to only
show items which include the typed substring. By default it performs case-insensitive
match on all columns, however you can modify some options from the context menu,
such as:

• enable case-sensitive matching
• match only whole words instead of any substring
• enable fuzzy matching
• interpret the entered string as a regular expression
• pick a column on which to perform the matching

Instead of a quick filter, you can also use more complicated filtering (“Modify Filters”
from context menu, or Ctrl-Shift-F). In this dialog you can not only include match-
ing items, but also exclude or simply highlight them with a custom color.

Similarly to sorting, filtering requires fetching of the whole list which can slow down
IDA, especially during autoanalysis. To remove any filters, choose “Reset filters” from
the context menu.

See also: How To Use List Viewers in IDA4

https://hex-rays.com/blog/igors-tip-of-the-week-36-working-with-list-views-in-ida/
https://www.hex-rays.com/products/ida/support/idadoc/427.shtml

During debugging, patching still does not a�ect the input file, however it does a�ect the program memory if the location being patched
belong to a currently mapped memory area. So you can, for example, change instructions or data to see how the program behaves in
such situation.

#37: Patching

https://hex-rays.com/blog/igors-tip-of-the-week-37-patching/

Although IDA is mostly intended to be used for static analysis, i.e. simply looking at unaltered binaries, there are times you do
need to make some changes. For example, you can use it to fix up some obfuscated instructions to clean up the code flow or
decompiler output, or change some constants used in the program.

Patching bytes

Individual byte values can be patched via the Edit > Patch program > Change byte…
command.

You can change up to 16 bytes at a time but you don’t have to enter all sixteen – the
remaining ones will remain unchanged.

Igor’s tip of the week - season 01

30 Apr 2021

Assembling instructions

Edit > Patch program > Assemble… is available only for the x86 processor and currently only supports a subset of 32-bit x86 but it still
may be useful in simple situations. For example, the nop instruction is the same in all processor mode so you can still use it to patch
out unnecessary instructions.

Patched bytes view

Available either under Edit > Patch program or in View > Open subviews submenus,
this list view shows the list of the patched locations in the database and allows you
to revert changes in any of them.

Patching the input file

All the patch commands only a�ect the contents of the database. The input file
always remains una�ected by any change in the database. But in the rare case when
you do need to update the input file on disk, you can use Edit > Patch program >
Apply patches to input file…

Creating a di�erence file

File > Produce file > Create DIF File… outputs a list of patched location into a simple
text file which can then be used to patch the input file manually in a hex editor or
using a third party tool.

Patching during debugging

https://hex-rays.com/blog/igors-tip-of-the-week-37-patching/

#37: Patching

https://hex-rays.com/blog/igors-tip-of-the-week-37-patching/

Third party solutions

If the basic patching features do not quite meet your requirements, you can try the following third party plugins:

• IDA Patcher1 by Peter Kacherginsky, a submission to our 2014 plugin contest2

• KeyPatch3 by the Keystone Engine project, a winner of the 2016 contest4

See also: IDA Help: Edit|Patch core submenu5

Igor’s tip of the week - season 01

30 Apr 2021

1 https://github.com/iphelix/ida-patcher
2 https://www.hex-rays.com/contests_details/contest2014/
3 https://www.keystone-engine.org/keypatch/
4 https://www.hex-rays.com/contests_details/contest2016/
5 https://www.hex-rays.com/products/ida/support/idadoc/526.shtml

https://hex-rays.com/blog/igors-tip-of-the-week-37-patching/
https://github.com/iphelix/ida-patcher
https://www.hex-rays.com/contests_details/contest2014/
https://www.keystone-engine.org/keypatch/
https://www.hex-rays.com/contests_details/contest2016/
https://www.hex-rays.com/products/ida/support/idadoc/526.shtml

#38: Hex view

https://hex-rays.com/blog/igors-tip-of-the-week-38-hex-view/

In addition to the disassembly and decompilation (Pseudocode) views, IDA also allows you to see the actual, raw bytes behind
the program’s instructions and data. This is possible using the Hex view, one of the views opened by default (or available in the
View > Open subviews menu).
Even if you’ve used it before, there may be features you are not aware of.

Synchronization

Hex view can be synchronized with the disassembly view (IDA View) or Pseudocode
(decompiler) view. This option is available in the context menu under “Synchronize
with”.

Synchronization can also be enabled or disabled in the opposite direction (i.e. from
IDA View or Pseudocode window). When it is on, the views’ cursors move in lockstep:
changing the position in one view updates it in the other.

Igor’s tip of the week - season 01

07 May 2021

1 https://www.hex-rays.com/blog/igors-tip-of-the-week-26-disassembly-options-2/

Highlight

There are two types of highlight available in the Hex view.
1. the text match highlight is similar to the one we’ve seen in the disassembly listing1 and shows matches of the selected text anywhere
 on the screen.

2. current item highlight shows the group of bytes that constitutes the current item (i.e. an instruction or a piece of data). This can be
 an alternative way to track the instruction’s opcode bytes instead of the disassembly option.

Layout and data format

The default settings use the classic 16-byte lines with text on the right. You can change the format of individual items as well as the
amount of items per line (either a fixed count or auto-fit).

https://hex-rays.com/blog/igors-tip-of-the-week-38-hex-view/
https://www.hex-rays.com/blog/igors-tip-of-the-week-26-disassembly-options-2/

#38: Hex view

https://hex-rays.com/blog/igors-tip-of-the-week-38-hex-view/

Text options

Text area at the right of the hex dump can be hidden or switched to another encoding
if necessary.

Igor’s tip of the week - season 01

07 May 2021

2 https://www.hex-rays.com/blog/igors-tip-of-the-week-37-patching/

Editing (patching)

Hex view can be used as an alternative to the Patch program menu2. To start patch-
ing, simply press F2, enter new values and press F2 again to commit changes (Esc to
cancel editing). An additional advantage is that you can edit values in their native
format (e.g. decimal or floating-point), or type text in the text area.

Debugging

Default debugging desktop has two Hex Views, one for a generic memory view and
one for the stack view (synchronized to the stack pointer). Both are variants of the
standard hex view and so the above-described functionality is available but there are
a few additional features available only during debugging:

1. Synchronization is possible not only with other views but also with a value of a
 register. Whenever the register changes, the position in the hex view will be updat
 ed to match (as long as it is a valid address).
2. A new command in the disassembly view’s context menu allows to open a hex view
 at the address of the operand under cursor.

https://hex-rays.com/blog/igors-tip-of-the-week-38-hex-view/
https://www.hex-rays.com/blog/igors-tip-of-the-week-37-patching/

#39: Export Data

https://hex-rays.com/blog/igors-tip-of-the-week-39-export-data/

The Edit > Export Data command (Shift+E) o�ers you several formats for extracting the selected data from the database:
• hex string (unspaced): 4142434400
• hex string (spaced): 41 42 43 44 00
• string literal: ABCD
• C unsigned char array (hex): unsigned char aAbcd[] = { 0x41, 0x42, 0x43, 0x44, 0x00 };
• C unsigned char array (decimal): unsigned char aAbcd[] = { 65, 66, 67, 68, 0 };
• initialized C variable: struc_40D09B test = { 16961, 17475 }; NB: this option is valid only in some cases, such as for structure
 instances or items with type information.
• raw bytes [can be only saved to file]

Data in the selected format is shown in the preview text box which can be copied to the clipboard or saved to a file for further
processing.

Igor’s tip of the week - season 01

14 May 2021

https://hex-rays.com/blog/igors-tip-of-the-week-39-export-data/

#40: Decompiler basics

https://hex-rays.com/blog/igors-tip-of-the-week-40-decompiler-basics/

The Hex-Rays decompiler is one of the most powerful add-ons available for IDA. While it’s quite intuitive once you get used to
it, it may be non-obvious how to start using it.

Basic information

As of the time of writing (May 2021), the decompiler is not included with the standard IDA Pro license; some editions of IDA Home and
IDA Free include a cloud decompiler, but the o�ine version requires IDA Pro and must be purchased separately.
The following decompilers are currently available:

• x86 (32-bit)
• x64 (64-bit)
• ARM (32-bit)
• ARM64 (64-bit)
• PPC (32-bit)
• PPC64 (64-bit)
• MIPS (32-bit)

Igor’s tip of the week - season 01

21 May 2021

1 https://www.hex-rays.com/blog/igors-tip-of-the-week-33-idas-user-directory-idausr/
2 https://www.hex-rays.com/products/decompiler/manual/config.shtml

Pick the matching IDA

The decompiler must be used with the matching IDA: 32-bit decompilers only work
with 32-bit IDA (e.g. ida.exe) while 64-bit ones require ida64. If you open a 32-bina-
ry in IDA64 and press F5, you’ll get a warning:

Warning: Please use ida (not ida64) to decompile the current file

If you try to decompile a file for which you do not have a decompiler, a di�erent error
is displayed:

Invoking the decompiler

The decompiler can be invoked in the following ways:

1. View > Open subviews > Generate pseudocode (or simply F5). This always opens a new pseudocode view (up to 26);
2. Tab switches to the last active pseudocode view and decompiles current function. If there are none, a new view is opened just like
with F5.
Tab can also be used to switch from pseudocode back to the disassembly. Whenever possible, it tries to jump to the corresponding
location in the other view.
3. Full decompilation of the whole database can be requested via File > Produce file > Create C file… (hotkey Ctrl+F5). This command
decompiles selected or all functions in the database (besides those marked as library functions) and writes the result to a text file.

Changing options

Because of its origins as a standalone plugin, the decompiler’s options are not currently present in the Options menu but are accessed
via Edit > Plugins > Hex-Rays Decompiler.

This dialog changes options for the current database. To change them for all future files, edit cfg/hexrays.cfg. Instead of editing the
file in IDA’s directory, you can create one with only changed options in the user directory1. The available options are explained in the
manual2.

https://hex-rays.com/blog/igors-tip-of-the-week-40-decompiler-basics/
https://www.hex-rays.com/blog/igors-tip-of-the-week-33-idas-user-directory-idausr/
https://www.hex-rays.com/products/decompiler/manual/config.shtml

#40: Decompiler basics

https://hex-rays.com/blog/igors-tip-of-the-week-40-decompiler-basics/

Igor’s tip of the week - season 01

21 May 2021

https://hex-rays.com/blog/igors-tip-of-the-week-40-decompiler-basics/

#41: Binary file loader

https://hex-rays.com/blog/igors-tip-of-the-week-41-binary-file-loader/

IDA supports more than 40 file formats out of box. Most of them are structured file formats – with defined headers and meta-
data – so they’re recognized and handled automatically by IDA. However, there are times when all you have is just a piece of a
code without any headers (e.g. shellcode or raw firmware) which you want to analyze in IDA. In that case, you can use the
binary loader. It is always available even if the file is recognized as another file format.

Processor selection

Since raw binaries do not have metadata, IDA does not know which processor
module to use for it, so you should pick the correct one. By default, the metapc
(responsible for x86 and x64 disassembly) is selected, but you can choose another
one from the list (double-click to change).

Memory loading address

Without metadata, IDA also does not know at which address to place the loaded
data, so you may need to help it. The Loading segment and Loading o�set fields are
valid for the x86 family only. If the code being loaded uses a flat memory model (such
as 32-bit protected mode or 64-bit long mode), Loading segment should be left at 0
and the address specified in the Loading o�set field.

Other processors such as ARM, MIPS, or PPC, do not use these fields but prompt for
memory layout after you confirm the initial selection.

In this dialog you can specify where to place the data and whether to create an
additional RAM section. By default the whole file is placed at address 0 in the ROM
segment but you can specify a di�erent one or load only a part of the file by changing
the file o�set and loading size.

Igor’s tip of the week - season 01

28 May 2021

Code bitness

For processors where instruction decoding changes depending on current mode,
such as PC (16-bit mode, 32-bit protected mode, or 64-bit long mode) or ARM
(AArch32 or AArch64), you may get one more additional question.

https://hex-rays.com/blog/igors-tip-of-the-week-41-binary-file-loader/

#41: Binary file loader

https://hex-rays.com/blog/igors-tip-of-the-week-41-binary-file-loader/

Start disassembling

Finally, the file is loaded, but IDA can’t decide how to disassemble it on its own.

As suggested by the dialog, you can use C (make code) to try decoding at locations
which look like valid instructions. Typically, shellcode will have valid instructions at the
beginning, and firmware for most processors either starts at the lowest address or
uses a vector table (a list of addresses) pointing to code.

In addition to shellcode or firmware, the binary file loader can be used to analyze
other kinds of files using IDA’s powerful features for marking up and labeling data and
code. For example, here’s a PNG file labeled and commented in IDA:

Igor’s tip of the week - season 01

28 May 2021

https://hex-rays.com/blog/igors-tip-of-the-week-41-binary-file-loader/

Although it sounds trivial, renaming can dramatically improve readability. Even some-
thing simple like renaming of v3 to counter can bring immediate clarity to what’s
going on in a function. Coupled with the auto-renaming feature added in IDA 7.62, this
can help you propagate nice names through pseudocode as you analyze it. The
following items can be renamed directly in the pseudocode view:

• local variables
• function arguments
• function names
• global variables (data items)
• structure members

Renaming is very simple: put the cursor on the item to rename and press N – the
same shortcut as the one used in the disassembly listing. Of course, the command is
also available in the context menu.

You can also choose to do your renaming in the disassembly view instead of pseudo-
code. This can be useful if you plan to rename many items in a big function and don’t
want to wait for decompilation to finish every time. Once you finished renaming,
press F5 to refresh the pseudocode and see all the new names. Note that register-al-
located local variables cannot be renamed in the disassembly; they can only be

#42: Renaming and retyping in the decompiler

https://hex-rays.com/blog/igors-tip-of-the-week-42-renaming-and-retyping-in-the-decompiler/

Previously we’ve covered how to start using the decompiler1, but unmodified decompiler output is not always easy to read,
especially if the binary doesn’t have symbols or debug information. However, with just a few small amendments you can
improve the results substantially. Let’s look at some basic interactive operations available in the pseudocode view.

Text input dialog boxes (e.g. Enter Comment or Edit Local Type)

Igor’s tip of the week - season 01

04 Jun 2021

1 https://hex-rays.com/blog/igors-tip-of-the-week-40-decompiler-basics/
2 https://hex-rays.com/products/ida/news/7_6/

Type recovery is one of the hardest problems in decompilation. Once the code is
converted to machine instructions, there are no more types but just bits which are
being shu�ed around. There are some guesses the decompiler can make neverthe-
less, such as a size of the data being processed, and in some cases whether it’s
being treated as a signed value or not, but in general the high-level type recovery
remains a challenge in which a human brain can be of great help.

For example, consider this small ARM function:

sub_4FF203A8
 SUB R2, R0, #1
loc_4FF203AC
 LDRB R3, [R1],#1
 CMP R3, #0
 STRB R3, [R2,#1]!
 BNE loc_4FF203AC
 BX LR

Its initial decompilation looks like this:

We see that the decompiler could guess the type of the second argument (a2,
passed in R1) because it is used in the LDRB instruction (load byte). However, v2
remains a simple int because the first operation done on it is a simple arithmetic SUB
(subtraction). Now, after some thinking it is pretty obvious that both v2 and result
are also byte pointers and the subtraction is simply pointer math (since pointers are
just numbers on the CPU level).

We can fix things by changing the type of both variables to the same unsigned
__int8 * (or the equivalent unsigned char *). To do this, put cursor on the variable
and press Y, or use “Set lvar type” from the context menu.

Retyping

https://hex-rays.com/blog/igors-tip-of-the-week-42-renaming-and-retyping-in-the-decompiler/
https://hex-rays.com/blog/igors-tip-of-the-week-40-decompiler-basics/
https://hex-rays.com/products/ida/news/7_6/

#42: Renaming and retyping in the decompiler

https://hex-rays.com/blog/igors-tip-of-the-week-42-renaming-and-retyping-in-the-decompiler/

Igor’s tip of the week - season 01

04 Jun 2021

Alternatively, instead of fixing the local variable and then the argument, you can
directly edit the function prototype by using the shortcut on the function’s name in
the first line.

In that case, first argument’s type will be automatically propagated into the local
variable and you won’t need to change it manually (user-provided types have priority
over guessed ones).

In the final version there are no more casts and it’s clearer what’s happening. We’ll
solve the mystery of the function’s purpose next week, stay tuned!

https://hex-rays.com/blog/igors-tip-of-the-week-42-renaming-and-retyping-in-the-decompiler/

#43: Annotating the decompiler output

https://hex-rays.com/blog/igors-tip-of-the-week-43-annotating-the-decompiler-output/

Last week1 we started improving decompilation of a simple function. While you can go quite far with renaming and retyping,
some things need more explanation than a simple renamng could provide.

Comments

When you can’t come up with a good name for a variable or a function, you can add a comment with an explanation or a theory about
what’s going on. The following comment types are available in the pseudocode:

1. Regular end-of-line comments. Use / to add or edit them (easy to remember because in C++ // is used for comments).

2. Block comments. Similarly to anterior comments2 in the disassembly view, the Ins shortcut is used (I on Mac). The comment is
added before the current statement (not necessarily the current line).

3. Function comment is added when you use / on the first line of the function.

Due to limitations of the implementation3, the first two types can move around or even end up as orphan comments when the pseudo-
code changes. The function comment is attached to the function itself and is visible also in the disassembly view.

Using the comments, we can annotate the function from the previous post4 to clarify what is going on. On the screenshot below,
regular comments are highlighted in blue while block comments are outlined in orange.

In the end, the function seems to be copying bytes from a2 to a1, stopping at the first zero byte. If you know libc, you’ll quickly realize
that it’s actually a trivial implementation of strcpy5. We can now rename the function and arguments to the canonical names and add
a function comment explaining the purpose of the function.

Igor’s tip of the week - season 01

11 Jun 2021

1 https://hex-rays.com/blog/igors-tip-of-the-week-42-renaming-and-retyping-in-the-decompiler/
2 https://hex-rays.com/blog/igor-tip-of-the-week-14-comments-in-ida/
3 https://hex-rays.com/blog/coordinate-system-for-hex-rays/
4 https://hex-rays.com/blog/igors-tip-of-the-week-42-renaming-and-retyping-in-the-decompiler/
5 https://en.cppreference.com/w/c/string/byte/strcpy

https://hex-rays.com/blog/igors-tip-of-the-week-43-annotating-the-decompiler-output/
https://hex-rays.com/blog/igors-tip-of-the-week-42-renaming-and-retyping-in-the-decompiler/
https://hex-rays.com/blog/igor-tip-of-the-week-14-comments-in-ida/
https://hex-rays.com/blog/coordinate-system-for-hex-rays/
https://hex-rays.com/blog/igors-tip-of-the-week-42-renaming-and-retyping-in-the-decompiler/
https://en.cppreference.com/w/c/string/byte/strcpy

#43: Annotating the decompiler output

https://hex-rays.com/blog/igors-tip-of-the-week-43-annotating-the-decompiler-output/

Alas, the existing comments are not updated automatically, so references to a1 and a2 would have to be fixed manually.

Igor’s tip of the week - season 01

11 Jun 2021

1 https://hex-rays.com/wp-content/static/products/ida/idapro_cheatsheet.html
2 https://hex-rays.com/wp-content/static/products/ida/support/freefiles/IDA_Pro_Shortcuts.pdf

Empty lines

To improve the readability of pseudocode even further, you can add empty lines either manually or automatically. For manual lines,
press Enter after or before a statement. For example, here’s the same function with extra empty lines added:

To remove the manual empty lines, edit the anterior comment (Ins or I on Mac) and remove the empty lines from the comment.

To add automatic empty lines, set GENERATE_EMPTY_LINES = YES in hexrays.cfg. This will cause the decompiler to add empty lines
between compound statements as well as before labels. This improves readability of long or complex functions. For example, here’s a
decompilation of the same function with both settings. You can see that the second one reads easier thanks to extra spacing.

https://hex-rays.com/blog/igors-tip-of-the-week-43-annotating-the-decompiler-output/
https://hex-rays.com/wp-content/static/products/ida/idapro_cheatsheet.html
https://hex-rays.com/wp-content/static/products/ida/support/freefiles/IDA_Pro_Shortcuts.pdf

#44: Hex dump loader

https://hex-rays.com/blog/igors-tip-of-the-week-44-hex-dump-loader/

IDA has a file loader named ‘hex’ which mainly supports loading of text-based file formats such as Intel Hex1 or Motorola S-Re-
cord2. These formats contain records with addresses and data in hexadecimal encoding.

For example, here’s a fragment of an Intel Hex file:

:18000000008F9603008FD801008FDC01008FE001008FE401008FE80190
:20004000008FEC01008FF001008FF401008FF801008FFC01008F0002008F0402008F08024D
:20006000008F0C02008F1002008F1402008F1802008F1C02008F2002008F2402008F280228
:14008000008F2C02008F3002008F3402008F3802008F3C0293
:1000A000008F4002008F4402008F4802008F4C02F4
:20010000008F5002008F5402008F5802008F5C02008F6002008F6402008F680243204C694C
:20012000627261727920436F707972696768742028432920313939352048492D5445434818

or an S-Record

S0030000FC
S1230100810F0016490F0016816F8A0A0F00000098300016B2310016BC3300168E0D0016A7
S1230108280F00169A2900168A00F001866000080400000018230016792200160C00000032
S12301109800E00182A09E0B8000C2012A38001608000000EA3100163A380016FA310016CA
S1230118FF250016BE21001600000000182200169A0100169C330016F9C010010D000000D7

However, you may also have a simple unformatted hex dump, with or without addresses:

0020: 59 69 74 54 55 B6 3E F7 D6 B9 C9 B9 45 E6 A4 52
1000: 12 23 34 56 78
0100: 31 C7 1D AF 32 04 1E 32 05 1E 3C 32 07 1E 21 D9
12 23 34 56 78

Such files are recognized and handled by another loader called ‘dump’. Since, like raw binaries, they do not carry information
about the processor used, it has to be selected by the user.

For example, a hex dump of some MIPS code:

007C5DBC 27 BD FF D0
007C5DC0 FF B0 00 20
007C5DC4 FF BF 00 28
007C5DC8 0C 1F 17 64
007C5DCC 00 80 80 2D
007C5DD0 96 03 00 3E
007C5DD4 DF BF 00 28
007C5DD8 DF B0 00 20
007C5DDC 00 62 18 26
007C5DE0 2C 62 00 01
007C5DE4 03 E0 00 08
007C5DE8 27 BD 00 30

can be loaded into IDA without having to convert it to binary or a structured format like ELF.

This feature could be useful when working with shellcode or exchanging data with other software. As we described before, IDA
also supports exporting data from database3 as hexadecimal dump.

Igor’s tip of the week - season 01

18 Jun 2021

1 https://en.wikipedia.org/wiki/Intel_HEX
2 https://en.wikipedia.org/wiki/SREC_(file_format)
3 https://hex-rays.com/blog/igors-tip-of-the-week-39-export-data/

https://hex-rays.com/blog/igors-tip-of-the-week-44-hex-dump-loader/
https://en.wikipedia.org/wiki/Intel_HEX
https://en.wikipedia.org/wiki/SREC_
https://hex-rays.com/blog/igors-tip-of-the-week-39-export-data/

#45: Decompiler types

https://hex-rays.com/blog/igors-tip-of-the-week-45-decompiler-types/

In one of the previous posts, we’ve discussed how to edit types of functions and variables1 used in the pseudocode. In most
cases, you can use the standard C types: char, int, long and so on. However, there may be situations where you need a more
specific type. Decompiler may also generate such types itself so recognizing them is useful. The following custom types may
appear in the pseudocode or used in variable and function types:

Explicitly-sized integer types

• __int8 – 1-byte integer (8 bits)
• __int16 – 2-byte integer (16 bits
• __int32 – 4-byte integer (32 bits)
• __int64 – 8-byte integer (64 bits)
• __int128 – 16-byte integer (128 bits)

Explicitly-sized boolean types

• _BOOL1 – boolean type with explicit size specification (1 byte)
• _BOOL2 – boolean type with explicit size specification (2 bytes)
• _BOOL4 – boolean type with explicit size specification (4 bytes)

Regardless of size, values of these types are treated in the same way: 0 is considered false and all other values true.

Igor’s tip of the week - season 01

25 Jun 2021

1 https://hex-rays.com/blog/igors-tip-of-the-week-42-renaming-and-retyping-in-the-decompiler/
2 https://docs.microsoft.com/en-us/windows/win32/winprog/windows-data-types
3 https://hex-rays.com/products/ida/support/idadoc/1361.shtml

Unknown types

• _BYTE – unknown type; the only known info is its size: 1 byte
• _WORD – unknown type; the only known info is its size: 2 bytes
• _DWORD – unknown type; the only known info is its size: 4 bytes
• _QWORD – unknown type; the only known info is its size: 8 bytes
• _OWORD – unknown type; the only known info is its size: 16 bytes
• _TBYTE – 10-byte floating point (x87 extended precision 80-bit value)
• _UNKNOWN – no info is available about type or size (usually only appears in pointers)

Please note that these types are not equivalent to the similarly-looking Windows data types2 and may appear in non-Windows
programs.

More info: Set function/item type3 in IDA Help.

https://hex-rays.com/blog/igors-tip-of-the-week-45-decompiler-types/
https://hex-rays.com/blog/igors-tip-of-the-week-42-renaming-and-retyping-in-the-decompiler/
https://docs.microsoft.com/en-us/windows/win32/winprog/windows-data-types
https://hex-rays.com/products/ida/support/idadoc/1361.shtml

#46: Disassembly operand representation

https://hex-rays.com/blog/igors-tip-of-the-week-46-disassembly-operand-representation/

As we’ve mentioned before, the I in IDA stands for interactive, and we already covered some of the disassembly view’s interac-
tive features like renaming1 or commenting2. However, other changes are possible too. For example, you can change the
operand representation (sometimes called operand type in documentation). What is it about?

Most assemblers (and disassemblers) represent machine instructions using a mnemonic (which denotes the basic function of
the instruction) and operands on which it acts (commonly delimited by commas). As an example, let’s consider the most
common x86 instruction mov, which copies data between two of its operands. A few examples:

mov rsp, r11 – copy the value of r11 to rsp

mov rcx, [rbx+8] – copy a 64-bit value from the address equal to value of the register rbx plus 8 to rcx (C-like equivalent: rcx
= *(int64*)(rbx+8);)

mov [rbp+390h+var_380], 2000000h – copy the value 2000000h (0x2000000 in C notation) to the stack variable var_380

The first example uses two registers as operands, the second a register and an indirect memory operand with base register
and displacement, the third — another memory operand as well as an immediate (a constant value encoded directly in the
instruction’s opcode).

The last two examples are interesting because they involve numbers (displacements and immediates), and the same number
can be represented in multiple ways. For example, consider the following instructions:

mov eax, 64h
mov eax, 100
mov eax, 144o
mov eax, 1100100b
mov eax, 'd'
mov eax, offset byte_64
mov eax, mystruct.field_64

All of them have exactly the same byte sequence (machine code) on the binary level: B8 64 00 00 00. So, while picking another
operand representation may change the visual aspect, the underlying value and the program behavior does not change. This
allows you to choose the best variant which represents the intent behind the code without having to add a long explanation in
comments.

The following representations are available in IDA for numerical operands (some of them may only make sense in specific
situations):

1. Default number representation (aka void): used when there is no specific override applied on the operand (either by the user
or IDA’s autoanalyzer or the processor module). The actually used representation depends on the processor module but the
most common fallback is hexadecimal. Uses orange color in the default color scheme. For values which match a printable
character in the current encoding, a comment with the character could be displayed (depends on the processor module).
Hotkey: # (hash sign).

2. Decimal: shows the operand as a decimal number. Hotkey is H.
3. Hexadecimal: explicitly show the operand as hexadecimal. Hotkey is Q.
4. Binary: shows the operand as a binary number. Hotkey is B.
5. Octal: shows the operand as an octal number. No default hotkey but can be picked from the context menu or the “Operand
type” toolbar.
6. Character: shows the operand as a character constant if possible. Hotkey: R.
7. Structure o�set: replaces the numerical operand with a reference to a structure member with a matching o�set. Hotkey: T.
8. Enumeration (symbolic constant): the number is replaced by a symbolic constant with the same value. Hotkey: M.
9. Stack variable: the number is replaced by a symbolic reference into the current function’s stack frame. Usually only makes
sense for instructions involving stack pointer or frame pointer. Hotkey: Kt.

Igor’s tip of the week - season 01

02 Jul 2021

1 https://hex-rays.com/blog/igors-tip-of-the-week-24-renaming-registers/
2 https://hex-rays.com/blog/igor-tip-of-the-week-14-comments-in-ida/

https://hex-rays.com/blog/igors-tip-of-the-week-46-disassembly-operand-representation/
https://hex-rays.com/blog/igors-tip-of-the-week-24-renaming-registers/
https://hex-rays.com/blog/igor-tip-of-the-week-14-comments-in-ida/

#46: Disassembly operand representation

https://hex-rays.com/blog/igors-tip-of-the-week-46-disassembly-operand-representation/

10. Floating-point constant: only works in some cases and for some processors. For example, 3F000000h(0x3F000000) is actual-
ly an IEEE-754 encoding of the number 0.5. There is no default hotkey but the conversion can be performed via the toolbar or
main menu.
11. O�set operand: replace the number by an expression involving one or more addresses in the program. Hotkeys: O, Ctrl-O
or Ctrl-R (for complex o�sets).

All hotkeys revert to the default representation if applied twice.

In addition to the hotkeys, the most common conversions can be done via the context menu:

The full list is available in the main menu (Edit > Operand Type):

as well as the “Operand Type” toolbar:

Two more transformations can be applied to an operand on top of changing its numerical base:

1. Negation. Hotkey _(underscore). Can be used, for example, to show -8 instead of 0FFFFFFF8h (two representations of the
same binary value).
2. Bitwise negation (aka inversion or binary NOT). Hotkey: ~(tilde). For example, 0FFFFFFF8h is considered to be the same as
not 7.

Finally, if you want to see something completely custom which is not covered by the existing conversions, you can use a
manual operand. This allows you to replace the operand by an arbitrary text; it is not checked by IDA so it’s up to you to ensure
that the new representation matches the original value. Hotkey: Alt-F1.

Igor’s tip of the week - season 01

02 Jul 2021

https://hex-rays.com/blog/igors-tip-of-the-week-46-disassembly-operand-representation/

#47: Hints in IDA

https://hex-rays.com/blog/igors-tip-of-the-week-47-hints-in-ida/

Hints (aka tooltips) are popup windows with text which appear when you hover the mouse cursor over a particular item in IDA.
They are available in many situations.

Disassembly hints

In the disassembly view, hints can be shown in the following cases:

1. When hovering over names or addresses, a fragment of disassembly at the destination is shown.

2. When hovering over stack variables, a fragment of the stack frame layout is shown

3. When hovering over structure o�set operands, the fragment of the struct definition.

4. For enum operands – the enum with the definition.

Igor’s tip of the week - season 01

09 Jul 2021

1 https://hex-rays.com/blog/igors-tip-of-the-week-24-renaming-registers/

5. For renamed registers1, the hint shows the original register name

All these hints except the last one can be expanded or shrunk using the mouse wheel.

Decompiler hints

In the pseudocode, the hints are shown for:

1. Local variables and current function arguments: type and location (register or stack).

https://hex-rays.com/blog/igors-tip-of-the-week-47-hints-in-ida/
https://hex-rays.com/blog/igors-tip-of-the-week-24-renaming-registers/

#47: Hints in IDA

https://hex-rays.com/blog/igors-tip-of-the-week-47-hints-in-ida/

2. global variables: type.

Igor’s tip of the week - season 01

09 Jul 2021

3. structure or union members: member type and o�set.

4. function calls: prototype and information about arguments and return value.

5. other expressions and operators: type, signedness, etc.

2. In pseudocode, values of variables are shown in hints.

Debugger hints

During debugging, the hints behave mostly in the same way but with addition of dynamic information:

1. In the disassembly view, hovering on instruction operands shows a hint with their values and, if the value resolves to a valid address,
a fragment of memory at that address.

Configuring hints

The way hints work can be configured via Options > General…, Browser tab. You can set how many lines are displayed by default and
the delay before the hint is shown. The hints can be disabled completely by setting the number of lines to 0, or only disabled during
the debugging (showing the hint during debugging may lead to memory reads which can be slow in some situations).

https://hex-rays.com/blog/igors-tip-of-the-week-47-hints-in-ida/

#48: Searching in IDA

https://hex-rays.com/blog/igors-tip-of-the-week-48-searching-in-ida/

We covered how to search for things in choosers (list views)1, but what if you need to look for something elsewhere in IDA?

Text search

When searching for textual content, the same shortcut pair (Alt-T to start, Ctrl-T to
continue) works almost anywhere IDA shows text:

• Disassembly (IDA View)
• Hex View
• Decompiler output (Pseudocode)
• Output window
• Structures and Enums windows
• Choosers (list views)

This search matches text anywhere in the current view, for example both the instruc-
tions and comments, if present.

For the main windows, the action is also accessible via the Search > Text… menu.

The notice “(slow!)” refers to the fact that for text searching, IDA has to render all text
lines in the range being searched, which can get quite slow, especially for big
binaries. However, if you need the features like regexp matching, or searching for text
in comments, the wait could be worth it.

Binary search

Available as the shortcut pair Alt-B/Ctrl-B, or Search > Sequence of bytes…, this
feature allows searching for byte sequences (including string literals) and patterns in
the database (including process memory during debugging).

The input line accepts the following inputs:

1. byte sequence (space-delimited): 01 02 03 04
2. byte sequence with wildcard bytes represented by question marks: 68 ? ? ? 0
will match both 68 C4 1A 48 00 and 68 D8 1A 48 00.
3. one or more numbers in the selected radix (hexadecimal, decimal or octal). The
number will be converted to the minimal necessary number of bytes according to the
current processor endianness. For example, ² will be converted to E0 69 44 on x86
(a little-endian processor). This feature is useful for finding values in data areas or
embedded in instructions (immediates).
4. Quoted string literals, for example "Error". The string will be converted to bytes
using the encoding specified in the encoding selector. If “All Encodings” is selected,
search will be performed using all configured encodings2.
5. Wide-character string constant (e.g. L"test"). Only UTF-16 is used convert such
strings to raw bytes.

Igor’s tip of the week - season 01

16 Jul 2021

1 https://hex-rays.com/blog/igors-tip-of-the-week-36-working-with-list-views-in-ida/
2 https://hex-rays.com/blog/igor-tip-of-the-week-13-string-literals-and-custom-encodings/

https://hex-rays.com/blog/igors-tip-of-the-week-48-searching-in-ida/
https://hex-rays.com/blog/igors-tip-of-the-week-36-working-with-list-views-in-ida/
https://hex-rays.com/blog/igor-tip-of-the-week-13-string-literals-and-custom-encodings/

#48: Searching in IDA

https://hex-rays.com/blog/igors-tip-of-the-week-48-searching-in-ida/

Immediate search

As mentioned previously, the same instruction operand can be represented in di�er-
ent ways3 in IDA. For example, an instruction like

test dword ptr [eax], 10000h

can be also displayed as

test dword ptr [eax], 65536

or even

test dword ptr [eax], AW_HIDE

So if you do the text search for 10000h, IDA will find the first variation but not the
other two. On x86, you can use binary search for 10000 hex (will be converted to byte
sequence 00 00 01), but this will not work for processors which use instruction
encodings on non-byte boundary, or may give many false positives if unrelated
instructions happen to match the byte sequence. So here’s why the immediate
search is preferable:

1. it only checks instructions with numerical operands or data items, improving search
speed and reducing false positives;
2. it compares the numerical value of the operand, so any change in representation
does not prevent the match, meaning it will find any of the three variations above
Available as the shortcut pair Alt-I/Ctrl-I, or Search > Immediate value…

The value can be entered in any numerical base using the C syntax (decimal, hex,
octal).

Search direction

By default, all searches are performed “down” from the current position, i.e. toward
increasing addresses. You can change it by checking “Search Up” in the individual
search dialogs or beforehand via Search > Search direction. The currently set value
is displayed in the menu item as well as IDA’s status bar.

The “search next” commands and shortcuts (Ctrl-T, Ctrl-B, Ctrl-I) also use this
setting.

Igor’s tip of the week - season 01

16 Jul 2021

3 https://hex-rays.com/blog/igors-tip-of-the-week-46-disassembly-operand-representation/

Find all occurrences

This checkbox allows you to get results of the search over whole database or view in a list which you can then inspect at your leisure
instead of looking at every search hit one by one.

https://hex-rays.com/blog/igors-tip-of-the-week-48-searching-in-ida/
https://hex-rays.com/blog/igors-tip-of-the-week-46-disassembly-operand-representation/

#48: Searching in IDA

https://hex-rays.com/blog/igors-tip-of-the-week-48-searching-in-ida/

Picking the search type

This is not a definitive guide but here are some suggestions:

1. text (e.g. prompt or error message) displayed by the program: binary search for the quoted substring (NB: this will not work if the
string is not hardcoded but is in an external file or resource stream not loaded by IDA).
2. magic constant or error code: immediate search (in some cases binary search for the value can work too).
3. an address to which there are no apparent cross references: binary search for the address value (will only succeed if the reference
actually uses the value directly without calculating it in some way).
4. specific instruction opcode pattern: binary search for byte sequence (possibly with wildcard bytes).
i5. nstruction not having a fixed encoding: text search for mnemonic and/or operands (possibly as regexp).

More info: Search submenu4

Igor’s tip of the week - season 01

16 Jul 2021

4 https://hex-rays.com/products/ida/support/idadoc/568.shtml

https://hex-rays.com/blog/igors-tip-of-the-week-48-searching-in-ida/
https://hex-rays.com/products/ida/support/idadoc/568.shtml

#49: Navigation band

https://hex-rays.com/blog/igors-tip-of-the-week-49-navigation-band/

Navigation band, also sometimes called the navigator, or navbar, is the UI element shown by default at the top of IDA’s window,
in the toolbar area.

It shows the global overview of the program being analyzed and allows to see at a quick glance how well has the program been
analyzed and what areas may need attention.

Indicators

Colors

The colors are explained in the legend; the default color scheme uses the following colors:

Cyan/turquose: Library functions, i.e. functions which have been recognized by a FLIRT signature. Usually such functions cone
from the compiler or third party libraries and not the code written by the programmer, so they can often be ignored as a known
quantity;
Blue: Regular functions, i.e. functions not recognized by FLIRT or Lumina. These could contain the custom functionality, specific
to the program;
Maroon/brown: instructions(code) not belonging to any functions. These could appear when IDA did not detect or misdetected
function boundaries, or hint at code obfuscation being employed which could prevent proper function creation. It could also be
data incorrectly being treated as code.
Gray: data. This color is used for all defined data items (string literals, arrays, individual variables).
Olive: unexplored bytes, i.e. areas not yet converted to either code or data.
Magenta: used to mark functions or data imported from other modules (including wrapper thunks for imported functions).
Lime green: functions recognized by Lumina. They could be either library functions, or custom functions seen previously in other
binaries and uploaded by users to the public Lumina server.

Colors can be changed when changing the color scheme, or individually in Options > Colors… , Navigation band.

Igor’s tip of the week - season 01

23 Jul 2021

1 https://hex-rays.com/blog/igors-tip-of-the-week-48-searching-in-ida/

In addition to the colors, there may be additional indicators on the navigation band.
The yellow arrow is the current cursor position in the disassembly (IDA View), while
the small orange triangle on the opposite side shows the current autoanalysis
location (it is only visible while autoanalysis is in progress).

Additional display

The combobox (dropdown) at the right of the navigation band allows you to add
some additional markers to it. For example, you can show:

• Entry points (exported functions);
• Binary or text pattern search results1;
• immediate search1 results;
• cross references1 to a specific address;
• bookmarked positions;
• etc.

The markers show up as red circles and can be clicked to navigate.

https://hex-rays.com/blog/igors-tip-of-the-week-49-navigation-band/
https://hex-rays.com/blog/igors-tip-of-the-week-48-searching-in-ida/

#49: Navigation band

https://hex-rays.com/blog/igors-tip-of-the-week-49-navigation-band/

Navigation and zooming

Configuration

The control can be hidden or shown via View > Toolbars > Navigator, or the same item in the toolbar’s context menu.

It can be placed at any of the four sides of IDA’s window by using the drag handle.

In the horizontal position, you can show or hide the legend and the additional display combobox from the context menu.

Igor’s tip of the week - season 01

23 Jul 2021

By default, the navigation band shows the complete program, however you can zoom
in to see a more detailed view of a specific part. Zooming can be done by Ctrl +
mouse wheel, or from the context menu. The numerical options specify how many
bytes of the program are represented by one pixel on the band.

Once zoomed in, the visible part can be scrolled with the mouse wheel or by clicking
the arrow buttons at either end of the band. You can click into any part of the band to
navigate there in the disassembly view.

https://hex-rays.com/blog/igors-tip-of-the-week-49-navigation-band/

#50: Execution flow arrows

https://hex-rays.com/blog/igors-tip-of-the-week-50-execution-flow-arrows/

Although nowadays most IDA users probably use the graph view, the text view can
still be useful in certain situations. In case you haven’t noticed, it has a UI element
which can help you visualize code flow even without the full graph and even outside
of functions (the graph view is available only for functions). This element is shown on
the left of the disassembly listing:

The arrows represent code flow (cross-references) and the following types may be
present:

• Solid lines represent unconditional jumps/branches, dashed lines – conditional
 ones;
• Thick arrows are used for jumps back to lower addresses (they indicate potential
 loops);
• The current arrow is highlighted in black;
• Red arrows are used when target and/or destination lies outside of the function
 boundaries

In addition to arrows, the blue dots indicate potential breakpoint location, so the
breakpoint can be added by clicking on the dot, which will highlight the whole line red
to indicate an active breakpoint.

Igor’s tip of the week - season 01

30 Jul 2021

https://hex-rays.com/blog/igors-tip-of-the-week-50-execution-flow-arrows/

#51: Custom calling conventions

https://hex-rays.com/blog/igors-tip-of-the-week-51-custom-calling-conventions/

The Hex-Rays decompiler was originally created to deal with code produced by standard C compilers. In that world, everything
is (mostly) nice and orderly: the calling conventions1 are known and standardized and the arguments are passed to function
according to the ABI2.

However, the real life is not that simple: even in code coming from standard compilers there may be helper functions accepting
arguments in non-standard locations, code written in assembly, or whole program optimization3 causing compiler to use
custom calling conventions for often-used functions. And code created with non-C/C++ compilers may use completely di�er-
ent calling conventions (a notable example is Go).

Thus a need arose to specify custom calling conventions so that the decompiler can provide readable output when they’re
used. For this, ability to specify custom calling conventions has been added to IDA and decompiler.

Text input dialog boxes (e.g. Enter Comment or Edit Local

The most commonly used custom calling convention is specified using the keyword __usercall. The basic syntax is as follows:

{return type} __usercall funcname@<return argloc>({type} arg1, {type} arg2@<argloc>, ...);

where arglocis one of the following:

• a processor register name, e.g. eax, ebx, esi etc. In some cases flag registers (zf, sf, cf etc.) may be accepted too.
• a register pair delimited with a colon, e.g. <edx:eax>.

The register size should match the argument or return type (if the function returns void, return argloc must be omitted). Arguments
without location specifiers are assumed to be passed on stack according to usual rules.

Igor’s tip of the week - season 01

06 Aug 2021

1 https://docs.microsoft.com/en-us/cpp/cpp/calling-conventions
2 https://en.wikipedia.org/wiki/Application_binary_interface
3 https://docs.microsoft.com/en-us/cpp/build/reference/gl-whole-program-optimization

Scattered argument locations

In complicated situations a large argument (such as a structure instance) may be passed in multiple registers and/or stack slots. In
such case the following descriptors can be used:

• a partial register location: argoff:register^regoff.size.
• a partial stack location: argoff:^stkoff.size.
• a list of partial register and/or stack locations covering the whole argument delimited with a comma.

Where:

• argoff – o�set within the argument
• stkoff – o�set in the stack frame (the first stack argument is at o�set 0)
• register – register name used to pass part of the argument
• regoff – o�set within the register
• size – number of bytes for this portion of the argument

regoff and size can be omitted if there is no ambiguity (i.e. whole register is used).

For example, a 12-byte structure passed in RDI and RSI could be specified like this:

void __usercall myfunc(struc_1 s@<0:rdi, 8:rsi.4>);

Userpurge

The __userpurge calling convention is equivalent to __usercall except it is assumed that the callee adjusts the stack to account for
arguments passed on stack (this is similar to how __cdecl di�ers from __stdcall on x86).

https://hex-rays.com/blog/igors-tip-of-the-week-51-custom-calling-conventions/
https://docs.microsoft.com/en-us/cpp/cpp/calling-conventions
https://en.wikipedia.org/wiki/Application_binary_interface
https://docs.microsoft.com/en-us/cpp/build/reference/gl-whole-program-optimization

#51: Custom calling conventions

https://hex-rays.com/blog/igors-tip-of-the-week-51-custom-calling-conventions/

Spoiled registers

The compiler or OS ABI also usually specifies which registers are caller-saved, i.e. may be spoiled (or clobbered) by a function call. In
general, any register which can be used for argument passing or return value is considered potentially spoiled because the called
function could in turn call other functions. For example, on x86, EAX, ECX, and EDX are by default considered spoiled and their values
after the call are considered undefined by the decompiler. If this is not the case, you can help the decompiler by using the
__spoils<{reglist}> specifier. For example, if the function does not clobber any registers, you can use the following prototype:

void __spoils<> func();

If a custom memcpy implementation uses esi and edi without saving and restoring them, you can add them to the spoiled list:

void* __spoils<esi, edi> memcpy(void*, void*, int);

The __spoils attribute can also be combined with __usercall:

int __usercall __spoils<> g@<esi>();

See also: Set function/item type4 and Scattered argument locations5 in IDA Help.

Igor’s tip of the week - season 01

06 Aug 2021

4 https://hex-rays.com/products/ida/support/idadoc/1361.shtml
5 https://hex-rays.com/products/ida/support/idadoc/1492.shtml

https://hex-rays.com/blog/igors-tip-of-the-week-51-custom-calling-conventions/
https://hex-rays.com/products/ida/support/idadoc/1361.shtml
https://hex-rays.com/products/ida/support/idadoc/1492.shtml

#52: Special type attributes

https://hex-rays.com/blog/igors-tip-of-the-week-52-special-attributes/

IDA uses mostly standard C (and basic C++) syntax, but it also supports some extensions, in particular to represent low-level
details which are not necessary for “standard” C code but are helpful for real-life binary code analysis. We’ve already covered
custom types1 and calling conventions2, but there are more extensions you may use or encounter.

Function attributes

The following attributes may be used in function prototypes:

• __pure : a pure function (always returns the same result for same inputs and does not a�ect memory in a visible way);
• __noreturn: function does not return to the caller;
• __usercall or __userpurge: user-defined calling convention (see previous post3);
• __spoils: explicit spoiled registers specification (see previous post3);
• v__attribute__((format(printf,n1,n2))): variadic function with a printf-style format string in argument at position n1 and variad-

Igor’s tip of the week - season 01

13 Aug 2021

1 https://hex-rays.com/blog/igors-tip-of-the-week-45-decompiler-types/
2 https://hex-rays.com/blog/igors-tip-of-the-week-51-custom-calling-conventions/
3 https://hex-rays.com/blog/igors-tip-of-the-week-51-custom-calling-conventions/
4 https://hex-rays.com/products/ida/support/idadoc/1361.shtml

Argument attributes

These attributes can often appear when IDA lowers a user-provided prototype to represent the actual low-level details of argument
passing.

• __hidden: the argument was not present in source code (for example the implicit this pointer in C++ class methods).
• __return_ptr: hidden argument used for the return value (implies __hidden);
• __struct_ptr: argument was originally a structure value;
• __array_ptr: argument was originally an array (arrays ;
• __unused: unused function argument.

For example, if s1 is a structure of 16 bytes, then the following prototype:

struct s1 func();

will be lowered by IDA to:

struct s1 *__cdecl func(struct s1 *__return_ptr __struct_ptr retstr);

Other attributes

• __cppobj: used for structures representing C++ objects; some layout details change if this attribute is used (e.g. treatment of empty
 structs or reuse of end-of-struct padding in inheritance);
• __ptr32, __ptr64: explicitly-sized pointers;
• __shifted: a pointer which points not at the start of an object but some location inside or before it.

See also: Set function/item type4 in IDA Help.

https://hex-rays.com/blog/igors-tip-of-the-week-52-special-attributes/
https://hex-rays.com/blog/igors-tip-of-the-week-45-decompiler-types/
https://hex-rays.com/blog/igors-tip-of-the-week-51-custom-calling-conventions/
https://hex-rays.com/blog/igors-tip-of-the-week-51-custom-calling-conventions/
https://hex-rays.com/products/ida/support/idadoc/1361.shtml

