Igor’s tip of the week

season three

from 20/08/2021 to 26/08/2022 ﬂ>hex-mys

Igor’s Tip Season 3 has arrived! Fuelled by the triumph of the previous seasons, we embark on a mission to showcase
the full extent of IDA's capabilities. In keeping with tradition, Igor presents a blend of fundamental and advanced IDA
features, catering to novices and seasoned experts alike. This season, we venture deep into the realm of working with
data types, unveiling less-known operations, and unleashing the full potential of the Decompiler. In the concluding
sections, Igor discloses strategies for automating repetitive tasks and personalizing IDA's User Interface to harmonize
with your distinct workflow.

We cordially invite you to join us for this promising Season 3, and keep following Igor’s Tip every Friday!

Usage: basic and advanced usage of IDA features #133: Alignment items
#109: Hex view text encoding #134: ARM BL jumps
#111: IDA Keyboard Shortcuts cheat sheet #137: Processor modes and segment registers
#121: Limiting search to an address range #150: Extract function
#122: Manual load
#123: Opcode bytes Decompiler: related to the Hex-Rays decompiler
#126: Non-returning functions #106: Outlined functions
#127: Changing function bounds #107: Multiple return values
#128: String list #108: Raw memory accesses in pseudocode
#129: Searching for text in database #112: Matching braces
#130: Source line numbers #117: Reset pointer type
#131: Advanced filters in choosers #118: Structure creation in the decompiler
#135: Exporting disassembly from IDA #138: Pointer math in the decompiler
#136: Changing assembler syntax #143: Fixing wrong address references in the decompiler
#139: License borrowing #147: Fixing "stack frame is too big"
#144: Macros and simplified instructions #148: Fixing “call analysis failed"
#145: HTML export #149: Using symbolic constants in the decompiler
#146: Graph printing #151: Fixing "function frame is wrong"
#152: Force-creating functions #153: Copying pseudocode to disassembly
#154: Synchronized views #155: Splitting stack variables in the decompiler
Types: working with types Automation: automating repetitive tasks
#125: Structure field representation #124: Scripting examples
#140: Loading PDB types #156: Command-line options for firmware loading

#141: Parsing C files
#142: Mapping local types
Customization: customizing IDA Ul to better suit your workflow

Hidden: hidden gems, not widely known but useful functionality #116: IDA startup files
#105: Offsets with custom base
#110: Self-relative offsets
#113: Image-relative Offsets (RVA)
#114: Split offsets
#115: Set callee address
#119: Force call type
#120: Set call type
#132: Finding "hidden" cross-references

ablogserieson
HEX-RAYS BLOG CHECK ALL ARTICLES : WWW.HEX-RAYS.COM/BLOG/

Offsets with custombase

09Sep2022

& https://hex-rays.com/blog/igors-tip-of-the-week-105-offsets-with-custom-base/

We've already covered , Wwhere an operand value or a data value matches an address in the program and
so can be directly converted to an offset. However, programs may also employ more complex, or indirect ways of refer-
ring to a location. One common approach is using a small offset from some predefined base address.

Offset (displacement) from a register
Many processors support instructions with addressing modes called “register with displacement”, “register with offset”
or similar. Operands in such mode may use syntax similar to following:

1. reg(offset)
2.offset(reg)
3.reg[offset]
4.[reg, offset]
5.[reg+offset]
6.etc.

The basic logic is the same in all cases: offset is added to the value of the register and then used as a number or (more
commonly) as an address. In the latter case it may be useful to have IDA calculate the final address for you and add the
cross-reference to it. If you know the value of the register at the time this instruction is executed (e.g. it is set in the pre-
ceding instructions), it is very simple to do:

1. With the cursor on the operand, Invoke Edit > Operand type > Offset > Offset (user-defined), or press Ctrl-R;

Edit Jjump Search Yiew Debugger Lumipa Qptions Windows Help

T Copy Cutec I LEAr L P = Y] s @ g
Begin selection AltsL 1
Select gll Data [l Unexplored | External symbol [l Lumina function
Select identifier shift=fnter [-) p— B @ Pocdocode A a Hex Vien-1 [F
Undo Ener comme... Ctl:Z = T
Rede S ROM: AAAA7CAR
Export data hiftaf ROM: 00007CAG loc_7CAR

ROM:@0007CAe @10 7F @5 84 E2 ADD R@,

ol Code C ROM:20007CA4 010 7F 19 A® E3 MoV R1,

=¥ Dita D ROM:80007CAB 810 FD @9 9@ E2 ADDS RO,

@ stuctyor. o ROM:00007CAC 810 OF 12 81 E2 ADD R1,

+ suings o ROM:@0007CEBe @10 C4 @0 91 e5 LDREQ RO,

& X ROM:00007CBA 810 08 00 86 83 ORREQ RO,
(T LI ROM:00007CBS 016 0B 08 00 BA BEQ loc_

X' Undefine v ROM: BO@Q/(BL 910 91 09 59 E3 P RO,

@l Rename M ROM: 09007CCE 910 C4 09 91 85 LDREQ RO,

ORREQ RO,
Operand type r B ooffset b R Offsct (data segment) (4] BEo Tow
Comments b P& Number v @ Offset (current segment) [Py @
Segments b) Character R @ Offcet by (any segment).. Alt+R LDREQ RO,
Structs v T segment s G [Otfset ser-defined) . CleR | ORRFQ RO,
Eunctions v P Enum member...] B Offset (struc)... T Comvertthe cumrent operand to an offsctwith any base
2.Enter the register value in the Base address field;
) e s s e o
W Enter reference informaticn x | anp RO, R4, #0x1FCAAGAR
MoV R1, #0x1rcoee
Type ADDS RO, RO, #Ox3IFAAAO
O 1 OFF0 - o-bit full offset. ADD R1, R1l, #0xEGOE0GCE ; R1=-0x1rCO00C:0xEQCQEEE0000xECIICOOT
O 2. OFF16 - 16-bil full et LDREQ RO, [R1,#exCa]
@) 3. OFF32 - 32:bi full offset PRAZQ RO, Ro, 48
BEQ loc_JCEC
O 4. OFF&4 - 64-bit full offset P RO, #0x4000
() 5. LOWS - low & bits of 16-Dit offset LDREQ LCH [Kl,#BxL.’I]
(O & LOWI6 - low 16 bits of 32-bit offset. ORREQ R@, Re, #ox1@
() 1 HIGHA - high & bits of 16-hit affset BEQ loc_7CEC
=) cp RO, #8x6CH00
() 8. HIGH16 - high 16 hits af 32-hit affet LDREQ RQ, LRl,ﬁBK(flJ
) Z. PREL31 - Low 31 bits (30..0) of the offeet + the high bit ORREQ RO, RO, #0x1000000
BEQ loc_7CEC
Booc addresa | 0x01rC000] ~ cHP RO, #0x70000
BNE loc_7Cre
[Treat the hase address as a plain pumber DR R@, [R1,#8xC4]
] Offeat points pact the main objact ORR RO, RO, #0x2000000
u base as offzet ba
L1 Foshas seofiut e i CODC XRCF: sub 7C4C+GCTS
[subtract operand vakue 3 sub_/CACH/CT ..
1] Signed operand STR RO, [R1,#0xC4]
] operand value of 0 is invalid
] Operarsd vakoe sENGT 0 il ; CODE XREF: sub_7Cac+9atj
MOV RO, #1
STRB RO, [R4,#8]
Tergel abess | OXFFFFFFAFE v MOV RO, #0
Target deita 0x0 - STR Re, [R4,#4]
MoV R1, i#t@x2580
Coe | conce heo MOV A, R4
3.Click OK;
MOV R1, #6x1FCooo
ADDS R®, R@, #6x3F4000
ADD R1, R1, #06xE0000000 ; R1=0x1FCO00+0xE0000000=0xEQ1FCO00
LDREQ RO, [[R1,#(dword E@IFCOCA - dword EGIFCE08) |
ORREQ RO, R@, #8

Igor’s tip of the week - season 03

09Sep2022
& hitps://hex-rays.com/blog/igors-tip-of-the-week-105-offsets-with-custom-base/

4.1DA will calculate the final address, replace the offset value by an equivalent expression, and add a cross-refer-
ence to destination:

Now it is obvious that the location being referenced is dword_E@1FCoC4.
See also:

IDA Help: Convert operand to offset (user-defined base)?2
IDA Help: Complex Offset Expression3

1 https://hex-rays.com/blog/igors-tip-of-the-week-95-offsets/
2 https://www.hex-rays.com/products/ida/support/idadoc/470.shtml
3 https://www.hex-rays.com/products/ida/support/idadoc/471.shtml

Outlined functions

16Sep2022

& https://hex-rays.com/blog/igors-tip-of-the-week-106-outlined-functions/

The release notes for mention outlined functions. What are those and how to deal with them in IDA?

Function outlining is an optimization that saves code size by identifying recurring sequences of machine code and re-
placing each instance of the sequence with a call to a new function that contains the identified sequence of operations.
It can be considered an extension of the optimization by sharing not only tails but arbitrary common
parts of functions.

Function outlining example
For example, here’s a function from iOS’s debugserver with some calls to outlined fragments:

__text:0600008180058F3C ; DNBThreadGetState(int, unsigned long long) [clone]
_text:PPB0OOO100058F3C _ 717DNBThreadGetStateiy.cold.1 ; CODE XREF: sub_10680BA3
_ text:00660000100058F3C
_ text:0080000180058F3C var_1l8= -0x18@
_ text:00060000180058F3C var_so= 0
_ text:0000000100058F3C
¥ _ text:0600000180058F3C STP
_ text:00080000100058F48 STP
_ text:0600000100058F44 ADD
_ text:0000000180058F48 BL
_ text:0060000180058F4C

X208, X19, [SP,#-0x10+var_10]!
X29, X30, [SP,#0x18+var s8]
X29, SP, #0x10

_outLInED| FunCTION 3

__text:0000000180058FAC loc_100058FAC

__ text:0000008100058FAC BL _ouTLIN} ===============S UBROUTINE ====
" text:PPEOOBO10OO58F5E CBNZ Wi, lo]]
_text:00@0000100058F54 CBZ X9, loci Attributes: outline
_text:PP00B0100@58F5S LDP X29, X3

_ text:0000000100058F5C B _ouTLTN OUTLINED FUNCTION 3 5
__text:0080000180058F60 ; - ------------—---- - H
_ text:0020000100858F 50 Mov X19, X8

_ text:0000000100058F60 loc 108858F60 ADD X8, X@, #
__text:P0R0000100058F68 BL _OUTLINL _ __ RET
__text:0P00B0O188858FE4 MOV X8, X19

_text:00009O0100O58FE8 LDP X29, X3@, [SP,#0x16+var s8]

_ text:ooc0000100058F6C B _OUTLINED_FUNCTION_4
__text:0880080108058F6C ; End of function DNBThreadGetState(int,ulong long)
_ text:0060000180058F6C

__text:0000000100058F70

The first fragment contains only two instructions besides the return instruction so it may not sound like we’re saving
much, but by looking at the cross-references you’ll see that it is used in many places:

& wrefs to _OUTLINED_FUNCTION_2 [m] x
Direction Type Address Text @
@ Do.. p DNBGetGenealogyinfoForThr... BL _OUTLINED_FUNCTION_3
= po.. p DNBGetGenealagylmagelnfo... BL _QUTLINED_FUNCTION_3
E po.. p DNBGetRequestedQoSForTh... BL _OUTLINED_FUNCTION_3
E po.. p DNBGetPThreadT(int ulong I.. BL _OUTLINED_FUNCTION_3
E po.. p DNBGetDispatchQueueT(int,u... BL _OUTLINED_FUNCTION_3
= po.. P DNBGetTSDAddressForThrea.., BL _OUTLINED_FUNCTION_3
5 po.. [s] DNBGetLoadedDynamiclibra... BL _OUTLINED_FUNCTION_3
5= po.. 8] DNBGetallLoadedLibrariesinf... BL _OUTLINED_FUNCTION_3
5= po.. [#] DNBGetlibrariesinfoForaddr.. BL _OUTLINED_FUNCTION_2
= po.. P DNBGetsharedCachelnfa(int)... BL _OUTLINED_FUNCTION_2
@ Do.. p DMNBBreakpointSet(intulong 1. BL _OUTLINED_FUNCTION_3
&= po.. P DNBBreakpointClear(int,ulon... BL _OUTLINED_FUNCTION_3
@ Do.. p DNBWatchpointSet(intulong .. BL _OUTLINED_FUNCTION_3
@ Do.. p DNBWatchpointClear(int,ulon... BL _OUTLINED_FUNCTION_3
E‘a Nn n NNRVatrhnaintGathlimCnnn =1} OLITHIMED FLIKCTIOR 2 5 o
Line 15 of 54
IT‘ Cancel Search Help

So the savings accumulated across the whole program can be quite substantial.

Handling outlined functions in decompiler

If we decompile the function, the calls to outlined fragments are shown as is, and the registers used or set by them show

up as potentially undefined (orange color):

| int64 DNBThreadGetState()
i
__inte4 vO; // x19
_ int&4 vl; // =0
__intea v2; // x9
i // wll

vl = OUTLINED_FUNCTION_3();

v1 = QUTLINED FUNCTION 1(v1);
while ();
if ()

return OU"

int v3; // wll]

OUTLTNED_FUNCTION_©_8(v1);
return OUTLINED_FUNCTION_4(v0);

Igor’s tip of the week - season 03

Outlined functions

16Sep2022

& https://hex-rays.com/blog/igors-tip-of-the-week-106-outlined-functions/

To tell the decompiler that the calls should be inlined into the function’s body, all the OUTLINED_FUNCTION_NN should be
marked as outlined code. This can be done manually, via the Edit Function (A1t-P) dialog:

MW Edit function .
Name of function | _OUTLINED_FUNCTION_3 v|

Start address |xt:DI:|DIZIIZIDIZI 10000E7EC |

End address | xt:000000010000E778 |

[] poes not return

Color DEFAULT [Ear function

[Library func

Enter size of (in bytes) [] static func
Local variables area | 0x0 ~ | [] BP based frame
Saved registers | 0xi0 ~ | |:| BP equals to 5P
Purged bytes | 00 iy | [Fuzzy sp

Frame pointer delta | 0x0 i |

Cancel Help

The added attribute is also displayed in the listing:

__text:@B@@OOBLOOPOETEC ; =============== S UB R O U T I N E ==
_ text:000000810008E76C

_ text:0000OOO1BBOOETEC ; Attributes:

_ text:000000810008E76C

__text:080000810000ETEC ; inte64 OUTLINED FUNCTION 3(void)

_ text:000000810000E76C _OUTLINED FUNCTION 3

_ text:080000810008E76C

‘_ text:800000010000E76C MOV X19, Xe

_ text:0c0000018008E778 ADD X8, Xo, #8

_ text:0c0000010008E774 RET

_ text:000000018008E774 ; End of function _OUTLINED FUNCTION =

_ text:0600000016000E774

Once all outlined functions are marked up, the decompiler inlines them and there are no more possibly undefined
variables:

i
unsigned _ int64 v1@; [/ =9
unsigned _ int64 *v11; // =8

vil = al + 1;
do
vl® = _ ldaxr(vll});
while { _ stlxr(vi® - 1, v11));
if (vie)
return (¥*{ int6d { fastcall **)(int6d4)){*(QWORD *)ale + 16LL))(al0)};
else

return (*¥{__int64 {_ fastcall **)(unsigned __ints4 *}))(*al + 16))(al);

Automating outlined function processing

If you have a big binary with hundreds or thousands of functions, it may become pretty tedious to mark up outlined func-
tions manually. In such case, making a small script may speed things up. For example, if you have symbols and outlined
functions have a known naming pattern, the following Python snippet should work:

Igor’s tip of the week - season 03

16Sep2022

& https://hex-rays.com/blog/igors-tip-of-the-week-106-outlined-functions/

import idautils
import ida_name
import ida_funcs
for f in idautils.Functions():
nm = ida_name.get_name(f)
if nm.startswith(“_OUTLINED_FUNCTION”) or nm.find(“.cold.”) != -1:
print (“%08X: %s”% (f, nm))
pfn = ida_funcs.get_func(f)
pfn.flags |= idaapi.FUNC_OUTLINE
ida_funcs.update_func(pfn)

It can be executed using File > Script command... (Shift+F2)
See also:

IDA Help: Edit Function3
IDA Help: Function flags*

1 https://hex-rays.com/products/ida/news/8_0/

2 https://hex-rays.com/blog/igors-tip-of-the-week-87-function-chunks-and-the-decompiler/
3 https://www.hex-rays.com/products/ida/support/idadoc/485.shtml

4 https://www.hex-rays.com/products/ida/support/idadoc/1729.shtml

Multiple returnvalues

23Sep2022

& https://hex-rays.com/blog/igors-tip-of-the-week-107-multiple-return-values/

The Hex-Rays decompiler was initially created to decompile C code, so its pseudocode output uses (mostly) C syntax.
However, the input binaries may be compiled using other languages: C++, Pascal, Basic, ADA, and many others. While
the code of most of them can be represented in C without real issues, some have peculiarities which require

or have to be handled with . Still, some languages use approaches so different from standard
compiled C code that special handling for that is necessary. For example, uses a (stack-based or
register-based) so different from standard C calling conventions, that custom support for it had to be

Multiple return values

Even with custom calling conventions, one fundamental limitation of IDA’s type system remains (as of IDA 8.0): a function
may return only a single value. However, even in otherwise C-style programs you may encounter functions which return
more than one value. One example is compiler helpers like idivmod/uidivmod. They return simultaneously the quotient
and remainder of a division operation. The decompiler knows about the standard ones (e.g. __aeabi_idivmod for ARM
EABI) but you may encounter a non-standard implementation, or an unrelated function using a similar approach (e.g. a
function written manually in assembly).

Because the decompiler does not expect that function returns more than one value, you may need to inspect the
disassembly or look at the place of the call to recognize such functions. For example, here’s a fragment of decompiled
ARM32 code which seems to use an undefined register value:

The function seems to modify the R1 register, although normally the return values (for 32-bit types) are placed in Re. Pos-
sibly this is an equivalent of divmod function which returns quotient in Re and remainder in R1?

while ()

sub_1182999C(val, b);

if (S 3)
= | int v12; // |

To handle this, we can use an artificial structure and a custom calling convention specifying the registers and/or stack
locations where it should be placed. For example, add such struct to Local Types:

struct divmod_t

{
int quot;
int rem;

s
and set the function prototype: divmod_t __ usercall my_divmod@<R1:RO>(int@<Re>, int@<R1>);

The decompiler then interprets the register values after the call as if they were structure fields:

while (3
{
= my_divmod(, b);
= .rem;
if (viZ.rem > 9)
= LOBYTE(v1Z.rem) + - 58;
*o - = + 48;
/= (unsigned int)b;
}
A similar approach may be used for languages with native support for functions with multiple return values: Go, Swift,
Rust etc.
See also:

1 https://hex-rays.com/blog/igors-tip-of-the-week-51-custom-calling-conventions/
2 https://hex-rays.com/blog/igors-tip-of-the-week-71-decompile-as-call/

3 https://go.dev/

4 https://go.dev/src/cmd/compile/abi-internal

5 https://hex-rays.com/products/ida/news/7_6/

¢ https://hex-rays.com/blog/igors-tip-of-the-week-51-custom-calling-conventions/

Igor’s tip of the week - season 03

Raw memory accessesinpseudocode

30Sep2022

& https://hex-rays.com/blog/igors-tip-of-the-week-108-raw-memory-accesses-in-pseudocode/

Sometimes in pseudocode you may encounter strange-looking code:

The code seems to dereference an array called MEMORY and is highlighted in red. However, this variable is not defined
anywhere. What is it?

Such notation is used by the decompiler when the code accesses memory addresses not present in the database. In

most cases it indicates an error in the original source code. If we look at the disassembly for the example above, we'll
see this:

The variable pfont is loaded into register edx which is then compared against zero using test edx, edx/jz sequence.
The jump to loc_4060D3 can only occur if edx is zero, which means that the mov eax, [edx+1@h] instruction will try to
dereference the address 0x10. Because the database does not contain the address 0x19, it can’'t be represented as a
normal or a dummy variable so the decompiler represents it as a pseudo-variable MEMORY and uses the address as the
index. The dereference is shown in red to bring attention to the potential error in the code. For example, judging by the
assembly, in this binary the programmer tried reading a structure pointer even if it is NULL. A more modern compiler
would probably even remove such code as dereferencing NULL pointer is undefined behavior.

In cases where such access is not an error (for example, the code directly accesses memory-mapped hardware regis-
ters), creating a new segment for the accessed address range is usually the correct approach.

Igor’s tip of the week - season 03

Hex view text encoding

070ct2022

& https://hex-rays.com/blog/igors-tip-of-the-week-109-hex-view-text-encoding/

The Hex view is used to display the contents of the database as a hex dump. It is also used during debugging to display
memory contents.

@ Hex View-1
33 C co 8D
S50 FF B FE 6E
oC 85 C B C4 ES
68 03 E oo Sl

By default it has a part on the right with the textual representation of the data. Usually the text part shows Latin letters or
dots for unprintable characters but you may also encounter something unusual:

68 65 6E 20 77 72 69 T4 &9 6E 67
€1 74 €1 66 69 6C 65 00]S -k

Why is there Chinese among English? Is it a hidden message and the binary actually comes from China?

In fact, the mystery has a very simple explanation: the encoding used for showing text data in hex view
default which is usually UTF-8, so a valid UTF-8 byte sequence may decode to Chinese, Japanese, Russian, Kore-
an, or even emoji. If you prefer to see only the plain ASCII text, you can change the encoding using these simple steps:

1. From the hex view’s context menu, invoke Text > Add encoding...

Data format 4

Columns L4

Text P [~ Show

Edit... F2 10 Database default (UTF-8)
Synchronize with 4 UTF-16LE

Font.. UTF-32LE

oo T T T Add encoding...

2. Enter “ascii”’;
3. the new encoding will be added to the list and made default, so any bytes not falling into the ASCII range will be
shown as unprintable:

rd - -from-%lu.%d -w

Data format

Calame ' or -record-at -$10
Text > ¥ Show 2z lu-against-recor
Edit... P2 1 d-at-310lu.To ma
Database default (UTF-8) © ny keyblocklevel

Synchronizewith ~ * UTF-16LE £ =; Try-increasin
& g-sort_key block

Font... = 0 s.Quick-recover
e —= ¥ ascii 5 aborted; Run -rec
79 20 77 69 7 overy -without -sw

20 27 71 27 Add encoding... 8 itch-'g'-or-with

Instead of “ascii” you can use another encoding which matches the type of binary you're analyzing. For example, if you
work with legacy Japanese software, encodings like “Shift-JIS”, “cp932” or “EUC-JP” may help you discover otherwise
hidden text.

31 33 3ABS DB 2D C
31 38 3R 4C €9 €& 7

70 &5 00 00
B8 DE CO B2

53 70 33 31 36 3A BC AE B3 =
BF B2 DE 31 35 3A 54 61 €2 6C 65 MM... :Table
bEBM B Re ra nifiy 31 35 3A U3 ZD CC DE DY -Shatt..15:T-74
E Data format 2 31 33 3A 55 56 20 53 79 Jb....13:0V-Sy
7 Columns » 31 33 BA 55 56 D5 C . 1
e Text P~ Show
L Edit...]
€ Database default (UTF-£)
€ Synchronize with ~ * UTF-16LE
| UTF-16BE
Fi Font...
UTF-32BE
3 Debug
E shift-jis

20 53 &8 el
BC AC CC C4 Add enceding..
70 &5 00 00 00 00 Ou——ox—

B8 DE CO B2 CC DF 00 00 49 6E €2 74 €9 €1 &C &9

See also:

1 https://hex-rays.com/blog/igor-tip-of-the-week-13-string-literals-and-custom-encodings/
2 https://hex-rays.com/blog/igor-tip-of-the-week-13-string-literals-and-custom-encodings/

Igor’s tip of the week - season 03

Self-relative offsets

140ct2022

& https://hex-rays.com/blog/igors-tip-of-the-week-110-self-relative-offsets/

We’ve covered previously. There is a variation of such offsets commonly used in position-independent
code which can be handled easily with a little trick.

Let’s consider this ARM function from an ARM32 firmware:

ROM:00000058 ; int sub_58()

ROM: 00000058 sub_58 ; CODE XREF: sub_10A4:loc_501j
ROM: 00000058 ; DATA XREF: sub_8D40+20!r ...
ROM: 00000058 ADR RO, off 88 ; RO = Ox88

ROM: ©000005C LDM RO, {R10,R11} ; R10 = Ox3ADCO, R11l = Ox3AEQ0
ROM: 00000060 ADD R10, R10, RO ; R10 = Ox3ADCO+0x88

ROM: 00000064 SUB R7, R10, #1

ROM: 00000068 ADD R11, R11, RO ; R11l = Ox3AE00+0x88

ROM: ©000006C

ROM: 0000006C loc_6C ; DATA XREF: sub_58+20l0

ROM: ©000006C CMP R10, R11

ROM: 00000070 BEQ sub_D50

ROM: 00000074 LDM R10!, {RO-R3}

ROM: 00000078 ADR LR, loc_6C

ROM: ©000007C TST R3, #1

ROM: 00000080 SUBNE PC, R7, R3

ROM: 00000084 BX R3

ROM: 00000084 ; End of function sub_58

ROM: 00000084

ROM: 00000084 ; ------------- - e e e memeemmm——m——eo
ROM: 00000088 off 88 DCD dword_3ADCO ; DATA XREF: sub_58to

ROM: 00000088 ; sub_58+4%o0

ROM: 0000008C DCD off_3AE@0

IDA has converted the values at addresses 88 and 8C to offsets because they happen to be valid addresses, but if you
look at what the code does (I've added comments describing what happens), we'll see that both values are added to the
address from which they’re loaded (0x88), i.e. they’re relative to their own position (or self-relative).

To get the final value they refer to, we can use the action Edit > Operand type > Offset >Offset (user-defined) (shortcut
Ctrl-R), and enter as the base either the address value (0x88), or, for the case of the value at 00000088, the IDC keyword
here, which expands to the address under the cursor.

ROM: 88098058 ; =============== S U B R O U T I N E =======================================
ROM: 66000058
ROM: 66000058

ROM: 80080058 ; int sub_58() YW Enter reference information X
ROM: 08088058 sub_58

ROM: 02000058 Type

ROM: 08000058 ADR R®, o] (O 1 OFFS - 8-t ful offset

ROM: 80080@5C LDM R8, {| O 2 orris- 15bitful ot

ROM: 02020060 ADD R1e, @ 3. OFF32. 32.bit ull ot

ROM: 0@000064 suB R7, R =

ROM: 02002068 ADD R11, O 4 OFF54 - s4bit full offset

ROM: 0@e8886C () 5. LOWS -low 8 bits of 16-bit offset

ROM: 8008886C loc_6C (O &, LOW16 - low 16 bits of 32-bit offset

ROM: 6800906C cme R18, () 7. HIGHS - high 8 bits of 16-bit offset

ROM: 06000070 BEQ sub_D

ROM: 60000674 LDM R101, () 8. HIGH16 - high 16 bits of 32-bit offset

ROM: 88000878 ADR LR, 1{ O 2 PREL31-Low 31bits (30..0) of the offset + the high bit
ROM: 0@00ea7C 5T R3, #

ROM: 60000080 SUBNE PC, R] focescress |[nerdl] -
ROM: 06000084 BX R3

ROM: @0@00084 ; End of function sub_58 [[] Treat the base address as a plain number

ROM: 80000084
ROM: @@@OBOBA ; —------—-—--- - = ---—---—- - ___

[] offset points past the main object

ROM: 0@OBEBES of f_88 DCD [dword_3ADCE) e
ROM [] subtract operand value
ROM: @008003C DCD off_3AE@Q [signed operand
[] operand value of 0/is invalid

s =============== SUBROUTINE

’ [] operand value of NOT 0 is invalid

3 Attributes: info_from_lumina

Targetaddress | OxFFFFFFFF]

000088 00000088: ROM:off 88 (Synchronized with Hex View-1) Targetdelts [0x0 ~]

I oK I Cancel Help

IDA calculates the final address and replaces the value with an expression which uses a special symbol ., which denotes
the current address on ARM:

Igor’s tip of the week - season 03

Self-relative offsets

140ct2022

& https://hex-rays.com/blog/igors-tip-of-the-week-110-self-relative-offsets/

ROM: 00000088 of f 88 DCD off_3AE48 - . ; DATA XREF: sub_58%0

For the value at 8000008C, here will not work since it expands to Ox8c while the addend is Ox88. There are several op-
tions we can use:

1. use the actual value 0x88 as the base
2. use the expression here-4 which resolves to 0x88.
3. use here, but specify 4 in the Target delta field.

symbol Il Luria funcion O Enter reference information *
A View-A Pseudocode-A @ =

ROM: 0PREER58 () 1. OFF8 - 8-bit full offset

ROM: 80000858 () 2. OFF15 - 16-bit full offset

ROM:00080858 ; int sub_58() @® 3 OFF32 - 32-bit full offset

ROM: 20000058 sub_58

ROM: 80000058 O 4, OFF54 - 54-bit full offset

ROM: 2PRPAP5S ADR rg O 5 LOWS - low 8 bits of 16-bit offset
ROM: 8288085C LDM RA O 6 LOW1S -low 16 bits of 32-bit offset
ROM: 80000060 ADD R1 (O 7. HIGHS - high & bits of 16-bit offset
ROM: 60000064 SUB R7

() 8. HIGH16 - high 16 bits of 32-bit offset

ROM: 60000068 ADD R1
(O Z. PREL31 - Low 31 bits (30..0) of the offset + the high bit

ROM: @000006C
ROM: 8080086C loc_6C

ROM: 0208006C cMp R Base address | |here | v
ROM: 600000870 BEQ su

ROM: B00B0674 LDM R1 [Treat the base address as a plain number

ROM: BB088878 ADR LR [] offset points past the main object

ROM: 60000087C TST R3

[Use image base as offset base

ROM: 00000050 SUBNE PC] subvact perand vaoe

ROM: 00000884 BX Ry —° Pe

ROM: 80080084 ; Fnd of function sub 58 [signed operand

ROM: 60000034 [operand value of 0 s invalid

ROM: 00800884 ; ---------------------oooooooo oo [[] operand value of NOT 0is invalid

ROM: 00000088 of f_88 DCD off 3AE48 - .

ROM: 00000083

ROM:[@608088C DCD off_3AE@8 Tergetaddress | oxepeperer ~]

ROM: 80808890 [retgein [4 <]
- - Z============== S U B R O U

ROM: 00000898 ; SUB TI ol =

ROM: 600002050

IDA will use the delta as an additional adjustment for the expression:
ROM:0000008C DCD byte_3AE88+4 - .

Now we can see what addresses the function is actually using and analyze it further.

See also:

1 https://hex-rays.com/blog/igors-tip-of-the-week-105-offsets-with-custom-base/
2 https://hex-rays.com/blog/igors-tip-of-the-week-105-offsets-with-custom-base/
3 https://hex-rays.com/blog/igors-tip-of-the-week-21-calculator-and-expression-evaluation-feature-in-ida/

Igor’s tip of the week - season 03

210ct2022
& hitps://hex-rays.com/blog/igors-tip-of-the-week-111-ida-keyboard-shortcuts-cheat-sheet/

Many keyboard shortcuts’ have been described on this blog, but they may be difficult to retain, especially if you don’t use
them every day. To remedy that, we have been publishing a cheat sheet with the most common ones.

You can find it linked from our documentation page? in HTML® or PDF* format.
NOTE: the shortcuts described are for the default configuration; you can modify them® to your liking.
See also:

Igor’s tip of the week #01: Lesser-known keyboard shortcuts in IDA®
Igor’s tip of the week #02: IDA Ul actions and where to find them?

1 https://hex-rays.com/blog/tag/shortcuts/

2 https://hex-rays.com/documentation/

3 https://hex-rays.com/products/ida/support/idapro_cheatsheet.html

4 https://hex-rays.com/products/ida/support/freefiles/IDA_Pro_Shortcuts.pdf

5 https://hex-rays.com/blog/igor-tip-of-the-week-02-ida-ui-actions-and-where-to-find-them/
¢ https://hex-rays.com/blog/igor-tip-of-the-week-01-lesser-known-keyboard-shortcuts-in-ida/
7 https://hex-rays.com/blog/igor-tip-of-the-week-02-ida-ui-actions-and-where-to-find-them/

280ct2022

& https://hex-rays.com/blog/igors-tip-of-the-week-112-matching-braces/

When working with big functions in the decompiler, it may be difficult to find what you need if the listing is long. While you
can use cross-references! to jump between uses of a variable or collapse? parts of pseudocode to make it more com-
pact, there is one simple shortcut which can make your life easier.

The shortcut is not currently (IDA 8.1) shown in the context menu, but it was mentioned in the release notes for IDA 7.43;

« Decompilers
+ hexrays: added 'show global xrefs"; it works for struct and enum members

+ hexrays: added support for highlighting matching parentheses pairs

+ hexrays: added shortcut "%" ta jump to the matching parenthesis or (curly/square) bracket |in the pseudocode window

+ hexrays: added config var COL 1 APSF_I VARS tao collapse local variables declarations by default

+ hexrays: added support for the *farmat” attribute when parsing ellipsis args for called functions

You can also discover it by opening the Options > Shortcuts... dialog while the cursor is positioned on a brace or paren-
thesis:
int v/1; f/ [xsp+/ah] [xbp+/ah]

BOOL v72; // [xsp+78h] [xbp+78h] Shortcuts.. =
__int16 vr3; ff [xsp+/Ch] [xbp+/Ch]

Af (R(_BYIE *)(a2 + B) & I%(_QWORD *) Modiied by user I Conficing B Modified & canficing

panic(v2, "ASSERT FAILED al (%s:%d): W
LOBYIE(vS) - 105 BEEED

AF (*(_DWORD *) (42 + 28) == 16 && (*([Centicingeny

panic(v2, "ASSERT FAILED at (%s:%d): [Action Shorteut 5%
while ((*(_DWORD *)(*a1 + 36) & 3) != hocImpStrucDef z jin "Hex-Rays Decompiler” e
I hcmpXref X “Hex-Rays Decompiler” e

v5 = (unsigned __inl8)(v5 - 1); ™ 3

sub_FFFBCBAG(1000i64); Tab plugin e

if (lvs) hicMap2Othervar = plugin *Hex-Rays Decompiler” e

hx:MarkDecompiled plugin "Hex-Rays Decompiler” e
IHLE‘IEBd(’l): . hucNewsStruc plugin *Hex-Rays Decompiler” e
log("Error: CHD or DAT lines were ¢ | pouddename Shift-N plugin “Hex-Rays Decompiler” e
return 1i64; hxRemoveAry Shift-Del plugin “Hex-Rays Decompiler” e

} hxRename N plugin *Hex-Rays Decompiler” &

. . IxResTypeinfo plugin “Hex-Rays Decompiler” &
v7 = *(unsigned __int16 *)(a2 + 10); hxResetPtrType plugin “Hex-Rays Decompiler” ¢
;f (v7i==a) hxcSelUnionField ALY plugin “Hex-Rays Decompiler” e

hx:SendiDB lugin "Hex-Rays Decompiler” ¢

U = (F(BTE)(a2 + 8) << 8) | (32 | m—

goto LADCL 15; Coe3099035
}
if 7y 4
ARAE o o = | R e

(£ 4 51 ra00 5 1 Ao 00 0 &

This dialog can also be used to modify the shortcut to something you may find more convenient, for example Ctrl-]

See also:
Igor’s tip of the week #06: IDA Release notes — Hex Rays#
Igor’s tip of the week #02: IDA Ul actions and where to find them — Hex Rays®

1https://hex-rays.com/blog/igors-tip-of-the-week-18-decompiler-and-global-cross-references/
2 https://hex-rays.com/blog/igors-tip-of-the-week-100-collapsing-pseudocode-parts/

3 https://hex-rays.com/products/ida/news/7_4/

4 https://hex-rays.com/blog/igor-tip-of-the-week-06-release-notes/

5 https://hex-rays.com/blog/igor-tip-of-the-week-02-ida-ui-actions-and-where-to-find-them/

Image-relative Offsets (RVA)

04Nov2022

& https://hex-rays.com/blog/igors-tip-of-the-week-113-image-relative-offsets-rva/

Image-relative offsets are values that represent an offset from the image base of the current module (image) in memory.
This means that they can be used to refer to other locations in the same module regardless of its real, final load address,
and thus can be used to make the code position-independent (PIC), similarly to the . The alternative
name RVA means “Relative virtual address” and is often used in the context of the PE file format.

However, PIC is not the only advantage of RVAs. For example, on x64-bit platforms RVA values usually use 32 bits in-
stead of 64 like a full pointer. While this makes their range more limited (4GiB from imagebase), the savings from point-
er-type values can be substantial when accumulated over the whole binary.

For known RVA values, such as those in the PE headers or EH structures, IDA can usually convert them to an assem-
bler-specific expression automatically:

dd Jrva |__CxxFrameHandler4
dd byte_149368888
byte_ 148368688 db 28h
; FuncInfod

dd byte_148368891 ; unwind map
dd] rva|byte 148368899 ; ip2state map
byte 148368691 db 2
3 num unwind entries: 1
db_@ah ; funclet type: 1

dd??lQItemSelecticn@QT@@QEM@){Z_@ ; funclet
db— T, ; frame offset of object ptr to be destructed

However, sometimes there may be a need to do it manually, for example, when dealing with another update of the file
format not yet handled by IDA, or a custom format/structure which uses RVAs for addressing. In that case, you can use
yet another variation of the . The option to turn on is Use image base as offset base. When it’s
enabled, IDA will ignore the entered offset base and will always use the imagebase.

5
| ? Enter reference information *

Type

1. OFF3 - 8-bit full offset

. OFF16 - 16-bit full offset

. OFF32 - 32-bit full offset

. OFF&4 - 64-bit full offset

. LOWS - low 8 bits of 16-hit offset

N - NON®

It

. LOW 16 - low 16 bits of 32-bit offset
HIGHS - high & bits of 16-bit offset
. HIGH16 - high 16 bits of 32-bit offset

=i 1T

[[=1]

| Base address 0140000000 hd

[T Treat the base address as a plain number

[Offset points past the main ohject

I Use image base as offset base I

[] Subtract operand value
I [signed operand
] operand value of 0 is invalid
] operand value of NOT 0 is invalid

| Target address OxFFFFFFFFFFFFFFFF il

| Target delta 0x0 e

However, even if you use this approach in a 64-bit program, you may fail to reach the desired effect: the value will be
displayed in red to indicate an error and not show a nice expression with the final address, as expected.
db @FAh

dd 1AB540h

db &&h
db 6Dh, 2

Igor’s tip of the week - season 03

04Nov2022

& https://hex-rays.com/blog/igors-tip-of-the-week-113-image-relative-offsets-rva/

This happens because the command defaults to OFF32 for 32-bit values, but the final address does not fit into 32 bits.

The fix is simple: select OFF64 instead of OFF32.

-
W Enter reference information *

Type
(7) 1. OFF8 - 8-bit full offsst
() 2. OFF16 - 16-bit full offset
() 3. OFF32 - 32+bit full offset

I O 4. OFF64 - 64-bit full offset I
() 5. LOWS - low 8 bits of 16-hit offset
() 6, LOW16 - low 16 bits of 32-bit offset
(") 7. HIGHS - high & bits of 16-bit offset
() 8. HIGH16 - high 1 bits of 32-bit offset

Base address 0140000000 b

[T Treat the base address as a plain number
[l Offset points past the main object

B Use image base as offset base

(] subtract operand value

(] signed operand

] operand value of 0 is invalid

() operand value of NOT 0 is invalid

Target address OxFFFFFFFFFFFFFFFF v

Target delta 0x0 -

[ok | cancel Hep

9148320768
8148320764
8140320765
8140320769
8148320764
'9140832D76E
'814832D76F
8148320771
8148320775
8148320777
8148320776
8140320770
8140320781
8140320783
9140320787
8148320789
9148320780
B814@832D78F
8148320793
8148320795
8140320799
8140320796
'914@32D79F
'814832D7A1

dd

rva loc_ 148220056

db @DEh

dd

db_@FAh

db
dd

rva loc_ 148220830

H

funclet

funclet type: 3

funclet

rva ??1QPixmap@QTEPUEAAGXZ @ ;

s0h, 2
22¢850h

db ecoh, 2

dd
db
dd
db
dd

rva loc_148220@38
20h, 3
rva loc_148220@30
8Dh, 3
rva loc_14822C@3@

db @EDh, 3

dd

rva loc_148220@38

db 4oh, 4

dd

rva loc_ 148220038

db @ADh, 4

dd

rva loc_14822C@38

db @oh, 5

dd
db
dd

rva loc_148220@30
60h, 5
rva loc_14822C@3@

NOTE: for ARM binaries, the imagerel keyword is used instead of rva.

See also:

Igor’s tip of the week #105: Offsets with custom base3

Igor’s tip of the week #110: Self-relative offsets4

rame 5
funclet type:
funclet
funclet type:
Funclet
funclet type:
funclet
funclet type:
funclet
funclet type:
funclet
Funclet type:
Funclet
funclet type:
funclet
funclet type:
funclet
funclet type:
funclet

1https://hex-rays.com/blog/igors-tip-of-the-week-110-self-relative-offsets/
2 https://hex-rays.com/blog/igors-tip-of-the-week-105-offsets-with-custom-base/
3 https://hex-rays.com/blog/igors-tip-of-the-week-105-offsets-with-custom-base/
4 https://hex-rays.com/blog/igors-tip-of-the-week-110-self-relative-offsets/

Splitoffsets

11Nov2022
& https://hex-rays.com/blog/igors-tip-of-the-week-114-split-offsets/

Previously, we have which fit into a single instruction operand or data value. But this is not
always the case, so let’s see how IDA can handle offsets which may be built out of multiple parts.

8-bit processors

Although slowly dying out, the 8-bit processors — especially the venerable 8051 — can still appear in current hardware,
and of course we’ll be dealing with legacy systems for many years to come. Even though their registers can store only 8
bits af data, most of them can address 16-bit (64KiB) or more of memory which means that the addresses may need to
be built by parts.

For example, consider this sequence of instructions from an 8051 firmware:

code:CF22 mov R3, #OxFF
code:CF24 mov R2, #0xF6
code:CF26 mov R1, #0xA6

code:CF28 sjmp code_CF36
The code for 8051 is often compiled using Keil C51 compiler, and this pattern is a typical way of initializing a
. The address being referenced is @xF6A6, but can we make the instructions look “nice” and
create cross references to it?

One possibility is to use on the last move and specify the base of exFeee:

| E,‘ Enter reference information *x

Type

I~

. OFF3 - 8-bit full offset
OFF 16 - 16-bit full offset

I

. OFF32 - 32-bit full offset

(1]

OFF&4 - 64-bit full offset

&

. LOWS - low 8 bits of 15-bit offset

It

() 6. LOW16 -low 16 bits of 32-bit offset
(_) 7. HIGHS - high 8 bits of 16-bit offset

) 8. HIGH16 - high 16 bits of 32-bit offset

Base address I Oxfe00 I -

|_J Treat the base address as a plain number

[C] offset points past the main ohject
() Use image base as offset base

[Subtract operand value

O

| Signed operand
| Operand value of 0 is invalid
|_J Operand value of NOT 0 is invalid

|
| Targetaddress | w

Target delta 0x0 i

This does calculate the final address and create a cross-reference but the code is not quite “nice looking” and the other
instruction remains a plain number:

code:(F22 mov R3, #

code:CF24 mov R2, #

code:(F26 mov R1,|#(aFound - code FB@B) ; "found'|

code:CF28 sjmp code_CF36

e aFound: .text "found™ i |
code:CF2A .byte @

mmAAMFEAR mmdn FEAR.

In fact, a better option is to use the high8/low8 offsets for the two instructions. Because each instruction provides only
a part of the full offset, it alone cannot be used by IDA for calculating the full address which needs to be provided by the
user.

Igor’s tip of the week - season 03

11Nov2022

& https://hex-rays.com/blog/igors-tip-of-the-week-114-split-offsets/

R2 provides the top 8 bits of the address, so we should use the HIGH8 offset type for it. We also need to fill in the full
address (0xF6A6) in the Target address field. Base address should be reset to O.

(‘ Enter reference information >)
Type

() 1. OFF8 - 8-bit full offset

() 2. OFF15 - 16-bit full offset

() 3. OFF32 - 32-bit full offset

() 4. OFF64 - 64-bit full offset

(7)) 5. LOWS - low 8 bits of 15-bit offset

() & LOW16 - low 16 bits of 32-bit offset

© 7. HIGHS - high 8 bits of 16-bit offset

() 8. HIGH16 - high 16 bits of 32-hit offset

Base address x| v

[] Treat the base address as a plain number
[] Offset points past the main object

() Use image base as offset base

[T Subtract operand value

(T signed operand

() operand value of 0 is invalid

[Operand value of NOT 0 is invalid

Target address OxFEAS e

Target delta 0x0 -

[ok | ocancel = Hep

For R1, LOW8 and the same target can be use

(‘ Enter reference information *)
Type

() 1. OFF8 - 8-bit full offset

() 2. OFF16 - 16-bit full offset

() 3. OFF32 - 32-bit full offset

() 4. OFF64 - 64-bit full offset

© 5. LOWS - low 8 bits of 16-hit offset
() &, LOW16 - low 16 bits of 32-bit offset
(") 7. HIGHS - high & bits of 16-bit offset
() 8. HIGH16 - high 16 bits of 32-bit offset

Base address 03| w

[T Treat the base address as a plain number
[C] offset points past the main object

[Use image base as offset base

[subtract operand value

(] signed operand

] operand value of 0 is invalid

() operand value of NOT 0 is invalid

Target address OxFEAG i

Target delta 0x0 -

Splitoffsets

11Nov2022
& https://hex-rays.com/blog/igors-tip-of-the-week-114-split-offsets/

After applying both offsets, IDA displays them using matching assembler operators:

code:CF22 mowv R3, #

code:CF24 mowv R2, #(anund »>> 8) ; "found"
code:CF26 mowv R1, #(aFound & @xFF) ; "found”
code:CF28 sjmp code_CF36

RISC processors

RISC processors often use fixed-width instructions and may not be able to reach the full range of the address space
with the limited space for the immediate operand in the instruction. This include SPARC, MIPS, PowerPC and some oth-
ers. As an example, let’s look at this PowerPC VLE snippet:

seg01:0000C156 e_lis r3, 1 # Load Immediate Shifted
sego1:0000C15A e_addl6éi r3, r3, -0x1650 # OXE9BO
seg001:0000C15E se_mtlr r3

sego1:0000C160 se_blrl

The code calculates an address of a function in r3 and then calls it. IDA helpfully shows the final address in a comment,
but we can also use custom offsets to represent them nicely. For the e_add16i instruction, we can use the LOW16 type, as
expected, but in case of e_lis, the processor-specific type HIGHAL6 should be used instead of HIGH16. This is because the
low 16 bits are used here not as-is but as a sign-extened addend, with the high 16 bits of the final address becoming O
after the addition (0x10000-0x1650=0xE9BO).

“ Enter reference information X
Type

) 1. OFF8 - 8-bit full offset

OFF 16 - 16-bit full offset

OFF32 - 32-hit full offset

OFF&4 - 64-bit full offset
LOWS - low 8 bits of 16-bit offset

LOW 16 - low 16 bits of 32-bit offset
HIGHS - high & bits of 15-bit offset
HIGH16 - high 16 bits of 32-bit offset

[= R T - N T R WS PR R Y

. HIGHA16 - high adjusted 16 bits of 32-bit offset I

3 ONONONONONONONS

| Base address 0] -

|_| Treat the base address as a plain number
|__| Offset points past the main object

|__| Use image base as offset base

|__| Signed operand

[subtract operand value
] operand value of 0 is invalid

|| operand value of NOT 0 is invalid

Target address I OxESED I ™~

Target delta 0x0 i

After converting both parts, IDA uses special assembler operators to show the final address:

seg@al:epaaCl56 | e lis r3, unk_E9B&{ha #
seglal:esaaClsA e_addlei r3, r3, unk E9BE@L #
segeel: BeeaClsE se_mtlr r3 =
seghal: epaacloe ze blrl #

Now we can go to the target and create a function there.

Igor’s tip of the week - season 03

11Nov2022
& https://hex-rays.com/blog/igors-tip-of-the-week-114-split-offsets/

Note: specifically for PowerPC, IDA will automatically convert such sequences to offset expression if the target address
exists and has instructions or data. But the manual approach can still be useful for other processors or complex situa-

tions (for example, the two instructions are too far apart).

1https://hex-rays.com/blog/igors-tip-of-the-week-110-self-relative-offsets/
2 https://www.keil.com/support/man/docs/c51/c51_le_genptrs.htm
3 https://hex-rays.com/blog/igors-tip-of-the-week-105-offsets-with-custom-base/

Setcallee address

18Nov2022
& https://hex-rays.com/blog/igors-tip-of-the-week-115-set-callee-address/

is one of the most useful features of IDA. For example, they allow you to see where a particular func-
tion is being called or referenced from, helping you to see how the function is used and understand its behavior better or
discover potential bugs or vulnerabilities. For direct calls, IDA adds cross-references automatically, but in modern pro-
grams there are also many indirect calls which can’t always be resolved at disassembly time. In such cases, it is useful to
have an option to set the target call address manually.

Indirect call types
Most instruction sets have some kind of an indirect call instruction. The most common one uses a processor register
which holds the address of the function to be called:

x86/x64 and ARM can use almost any general-purpose register:

call edi (x86)
call rax (x64)
BLX R12 (ARM32)
BLX R3

BLR X8 (ARM64)

PowerPC is more limited and has to use dedicated ctr or 1r registers:

mtlr ri2
blrl

mr rl2, r9
mtctr r9
bctrl

in MIPS, in theory any register can be used, but binaries conforming to the standard PIC ABI tend to use the register t9:

la $t9, cxa_finalize
1w $a0, (_fdata - Ox111EQ)($v0@) # void *
jalr $t9 ; _ cxa_finalize

In addition to simple register, some processors support more complex expressions. For example, on x86/x64 it is possi-
ble to use a register with offset, allowing to read a pointer value and jump to it in a single instruction:

call dword ptr [eax+0Ch] (x86)
call gword ptr [rax+98h] (x64)

Setting callee address
In some simple situations (e.g. the register is initialized shortly before the call), IDA is able to resolve it automatically and
adds a comment with the target address, like in the MIPS example above, or this one:

e =

loc_7392346D:

mov edi, _ pRawDllMain|
Teat ed1, edl

iz short loc 739234C5
: } /7 starts at 73923435

¥

=
_try { // _finally(loc_73923C
__try { // __except at loc_/3923¢
mov [ebp+ms_exc.regislralion. Tryl
cmp [ebp+fduReason], 1
jnz shart loc_7397348F

T

=]

|mev dword 739252CC, 1]
) =)
Loc_7392348E:
push [ebp+lpuReserved]
push [ebpifdwReason]
push [ebp+hinstDLL]

mov ecx, edi

call ds: puard check icall_fptr
call ddi ; _pRalelMain|

mov [ebpivar 207, eax

jmp short loc_73923aC2

Igor’s tip of the week - season 03

18Nov2022
& hitps://hex-rays.com/blog/igors-tip-of-the-week-115-set-callee-address/

In more complicated situations, especially involving multiple memory dereferences or runtime calculations, it is possible
to specify the target address manually. For this, use the standard plugin command available in Edit > Plugins > Change
the callee address. The default shortcut is Ctrl- F11.

|Edit Jump Scarch View Debugaer Lumina Options Windows Help

B ooy conec S melddetd-fuX pOO
| Degin selection AlteL
Select all Data I Unesplored | Cternal symbol Il Lumina function
Select identificr Shift: Enter

mavens B [E sb_oomonss £

Undo Force calltype Cul+Z . text:0000000100801516

|
| Redo €y . text:@@00000 100601518
L .
)| Gom s _text:3BAODON1AGBAAE2D
_text:30A0PON10000AB2S
' Code c -text:0000000100084B28
lod paa) _text:AAAAGAA1AAAAARIF
& Sty AeQ _Lexl : AAAAGAA1AAAAAR3A
i _Lexl : AAAAGAA1AARAAR3E
st stongs »
e N . LexL : 6600000106664838
| Ay R .text :0000000810008453D
!X Undefine o .text:6000000100604043
'@l Renome N .text:0000000100004048 ; -
) , , | -text:eeceoce1c0eespas
| Dperndiype text loc_1
| Commens * .text:0000000100604B48
! segments v || .text:0000000100004848
U St v || .text:0000000100004851
! unctions » || .text:cuuoGEE10EERABSA
! patchprogem v || -text:ovoeeee100vesBsy
. text : BUUYOUY1OBERABSE
(Other D L mmmmmmmsmmmm e
([pagine e] Quiek o plugins cuies
iFagEEE
ub_100007668 . - Universal PE unpacker
ub_1000028FC SVD file management Ctrls Shift+ F11
ub_100002480 Sample plugin
ub_100002€5¢ Jump to next focup
ub_100002CA4 Create PAT from the datobase
ub_100002D60 =
-names
| Load DWARF file
18ot124
COM Helper

iz | [oomgemecieesaare] A
The plugin will ask you to enter the target address (you can also use a function name):

O Enterthe calles address *
Callee | sub_739231C0 |
[ok][comcel || heb |

The call instruction will gain a comment with the target address, as well as a cross-reference:

initterm e proc near ; CODE XREF: CRT INIT(x,x,x)117Btp
var_d4 = dword ptr -4
First = dword ptr 2
Last - dword ptr ©Lh
mov edi, edi
push abp
mov ebp, esp
push ecx
mov cax, __ seccurity cookic
xor eax, ehp
mov [ebptvar_4], eax
push esi
mov esi, [ebp+First]
xor wax, eax
cmp esi, [ebp+last]
jnb short loc_739236FB
push edi
loc_739236DE: ; CODE XREF: _ initterm_e+36lj
Lest wax, eax
jnz short loc 739236TA
mov edi, [esi]
test edi, edi
iz short loc 73923672
mov ecx, edi

call ds:__puard_check_icall_fptr ; _puard_check_icall_nop(x)

dall edi[; sub_739231C0
loc_739236F2:

add esi, 4 ; =============== SUBROUTINE

‘sub_739231l:9 proc necar ;ICCDE XREF: dinitterm c+2Elel

inivverm e+3E (Synchronized with Hex View-1)

Currently the plugin is implemented for x86/x64, ARM and MIPS. If you need to set or access this information program-
matically, you can check how it works by consulting the source code in the SDK, under plugins/callee.

1 https://hex-rays.com/blog/igor-tip-of-the-week-16-cross-references/

IDA startupfiles

25Nov2022
& https://hex-rays.com/blog/igors-tip-of-the-week-116-ida-startup-files/

IDA’s behavior and defaults can be configured using the dialog, saved ,or . Howev-
er, sometimes the behavior you need depends on something in the input file and can’t be covered by a single option, or
you may want IDA to do something additional after the file is loaded. Of course, there is always the possibility of making
a plugin or a loader using IDA SDK or IDAPython, but it could be an overkill for simple situations. Instead, you can make
use of several startup files used by IDA every time it loads a new file or even a previously saved database, and do the
necessary work there.

The following files can be used for such purpose:

ida.idc
This file in idc subdirectory if IDA’s install is automatically loaded on each run of IDA and can be used to perform any
actions you may need. The default implementation defines a utility class for managing breakpoints and a small helper
function, but you can add there any other code you need. As an example, it has a commented call to change a global
setting:

// uncomment this line to remove full paths in the debugger process options:
// set_inf_attr(INF_LFLAGS, LFLG_DBG_NOPATH|get_inf attr(INF_LFLAGS));

Instead of editing the file itself (which may have been installed in a read-only location), you can create a file idauser.idc
with a function user_main() and put it in the . If found, IDA will parse it and the main function of ida.idc
will try to call user_main(). This feature allows you to keep the custom behaviour across multiple IDA installs and ver-
sions, without having to edit ida.idc every time.

| ida.idc - Notepad -]
File Edit Format View Help

/

I’/ This file is automatically executed when IDA is started.

/7 You can define your own IDC functions and assign hotkeys to them.
//

/! You may add your frequently used functions here and they will

74 be always available.

/

I/ You can customize the initial behaviour of IDA without modifying
/! this file but by putting your logic in

7 %appdata%/Hex-Rays/IDA Pro/idauser.idc (Windows)

7 SHOME/ .idapro/idauser.idc (Linux & Mac)

74 Define the function called e EEiilgl there and it will be called.
/!

#include <idec.ide>

#softinclude <idauser.ide> // please define user main() in this file.
B
// A singleton class for managing breakpoints

onload.idc

This file is similar to ida.idc, but is only executed for newly loaded files. In it you can, for example, do some additional
parsing and formatting to augment the behavior of the default file loader(s). The default implementation detects when a
DOS driver (EXE or COM file with .sys or .drv extension) is loaded and tries to format its header.

Similarly to ida.idc, instead of editing the file itself, you can create a file named userload.idc in the user directory and
define a function userload.

// If you want to add your own processing of newly created databases,
// you may create a file named “userload.idc”:

//

// #define USERLOAD_IDC

// static userload(input_file,real file,filetype) {

// ... your processing here ...

// }

//

#tsoftinclude <userload.idc>

// Input parameteres:

// input_file - name of loaded file

// real_file - name of actual file that contains the input file.

// usually this parameter is equal to input_file,

// but is different if the input file is extracted from
// an archive.

// filetype - type of loaded file. See FT_.. definitions in idc.idc

Igor’s tip of the week - season 03

IDA startupfiles

25Nov2022
& https://hex-rays.com/blog/igors-tip-of-the-week-116-ida-startup-files/

idapythonrc.py

Unlike the previous examples, this a Python file, so it is only loaded if you have IDAPython installed and working. If the file
is found in the , it will be loaded and executed on startup of IDAPython, so you can put there any code to
perform fine-tuning of IDA, add utility functions to be called from the , or run any additional scripts.

Useful functions
Some functions which can be called from the startup files to configure IDA:

/ / : read and set various flags controlling IDA’s behavior. For example,
INF_AF can be used to change various analysis options.

: change a setting using keyword=value syntax. Most settings from ida.cfg can be used,
as well as some processor-specific or debugger-specific ones. A few examples:

e process_config_directive(“ABANDON_DATABASE=YES”);: do not save the database on exit. Please note that this
setting has a side effect in that it disables most user actions which change the database, for example MakeUnknown (U)
or MakeCode (C).

e process_config_directive(“PACK_DATABASE=2");: set the default database packing option to “deflate”;

e process_config directive(“GRAPH_OPCODE_BYTES=4");: enable display of opcode bytes in graph mode;

o for more examples, see ida.cfg (open it in any text editor).

1 https://hex-rays.com/blog/igors-tip-of-the-week-25-disassembly-options/

2 https://hex-rays.com/blog/igors-tip-of-the-week-22-ida-desktop-layouts/

3 https://hex-rays.com/blog/igors-tip-of-the-week-33-idas-user-directory-idausr/
4 https://hex-rays.com/blog/igors-tip-of-the-week-33-idas-user-directory-idausr/
5 https://hex-rays.com/blog/igors-tip-of-the-week-idas-user-directory-idausr/

6 https://hex-rays.com/blog/igors-tip-of-the-week-73-output-window-and-logging/
7 https://www.hex-rays.com/products/ida/support/idadoc/285.shtml

8 https://www.hex-rays.com/products/ida/support/idadoc/285.shtml

9 https://www.hex-rays.com/products/ida/support/idadoc/285.shtml

10 https://www.hex-rays.com/products/ida/support/idadoc/642.shtml

Igor’s tip of the week - season 03

Reset pointer type

02Dec2022
& https://hex-rays.com/blog/igors-tip-of-the-week-117-reset-pointer-type/

While currently (as of version 8.1) the Hex-Rays decompiler does not try to perform full type recovery, it does try to
deduce some types based on operations done on the variables, or using the type information for the API calls from

One simple type deduction performed by the decompiler is creation of typed pointers when a variable is being derefer-
enced, for example:

_QWORD *__fastcall sub_140006C94(_QWORD *al)

{
al[2] = oi64;
al[1] = “bad array new length”;
*al = &std::bad_array_new_length:: vftable’;
return al;
}

Unfortunately, such conversions are not always correct, as can be seen in the example: we have a mix of integer and
pointer elements in one array, so it’'s more likely a structure. Also, due to C’s array indexing rules, the array indexes are
multiplied by the element size (so, for example, a1[2] actually corresponds to the byte offset 16). If you prefer seeing
“raw” offsets, you can change the variable’s type to a plain integer. This can, of course, be done by manually changing
the variable’s type but there is a convenience command in the context menu which can be used to do it quickly:

| QWORD *__ fastcall sub_148086C94(_QWORD *al)
{
[2] = @ie4;
[1] = "bad array new length”;
% O tdbd . T _aoth: ;T yFtable’
e BF Add breakpoint] |
¥ Synchronize with 4
uﬁ Copy Ctrl+C

Rename lvar...

Set Ivar type... ¥

Reset pointer type

Convert to struct *...

Jump to xref... X
Edit comment... /
Edit block comment... Ins
Hide casts A

Font...

After resetting, the variable becomes a simple integer type and all dereferences now use explicit byte offsets and casts:

_QWORD *__fastcall sub_148¢ 4(__inted al)

+ 16) = 0i64;

+ 8) = "bad array new length”;
&std::bad_array_new_length:: vftable';
)

Now you can, for example, create a structure corresponding to these accesses, or choose an existing one.

See also:

1 https://hex-rays.com/blog/igors-tip-of-the-week-60-type-libraries/
2 https://www.hex-rays.com/products/decompiler/manual/interactive.shtml

Igor’s tip of the week - season 03

Structure creationinthe decompiler

09Dec2022

& https://hex-rays.com/blog/igors-tip-of-the-week-118-structure-creation-in-the-decompiler/
We've covered structure creation using , but there is also a way of doing it from the decom-
piler, especially when dealing with unknown, custom types used by the program.

Whenever you see code dereferencing a variable with different offsets, it is likely a structure pointer and the function is
accessing different fields of it.

DWORD * thiscall sub 40828F3(int this, int a2)

*(_DWORD *
memset((vo

this = &off _451050;

d #)(this + 4), 8, 0x30u);
tHlis + 20) = a2;

24) = 185;

8) =1;

52) = HWDLL 176(256);
56) = HWDLL 176(256);
60) = 0;

this = &off _451168;

return (_DWORD *)t ;

S~ D

+ o+ F o+ o+

)
)
)
) (4
)
)
)
)

i

You can, of course, create the structure manually and change the variable’s type, but it is also possible to ask the
decompiler to come up with a suitable layout. For this, use “Create new struct type...” from the context menu on the

variable:
(1 5 + 56) = HWDLL 176(256);
I Add breakpoint F2
(t p
IRD Synchronize with r
@ Copy Ctrl+C

Rename hvar...

Set lvar type... ¥
Convert to struct *...
Create new struct type...
Unmap variable(s)...
Jump to xref.. X
Edit cormnment... i
Edit block comment... Ins
Hide casts L)
If you don’t see the action, you may need to first. After you invoke it, the decompiler will analyze

accesses to the variables and come up with a candidate structure type which matches them:

D Please enter text x

The following new type will be created

struct struct_this

_DWORD dword@;
char chara;|
_DWORD dword8;
BYTE gapC[12];
DWORD dwordl3;
BYTE gaplC[12];
DWORD dword28;
BYTE gap2C[8];
DWORD dword34;
DWORD dword38;
DWORD dword3C;

s

Cancel

You can accept the suggestion as-is, or make any suitable adjustments (for example, change the structure name, or edit
some of the fields). After confirming, the structure is added to Local Types and the variable is converted to the corre-
sponding pointer type:

Igor’s tip of the week - season 03

09Dec2022

& hitps://hex-rays.com/blog/igors-tip-of-the-week-118-structure-creation-in-the-decompiler/

Hwdll *_ thiscall sub_4@28F3(Hwdll *this, int a2)

i
this->dwordd = &off_451858;
memset (&this->chard, 8, 0x30u);
this->dword28 = 22;
this->dwordl8 = 185;
this->dword8 = 1;
thiz->dword34 = HWDLL_176(256);
+thiz->dword38 = HWDLL_176(256);
this->dword3C = @;
this->dword® = &off 451168;
return this;

K

You can, of course, keep refining the structure as you continue with your analysis and discover how the fields are used in
other functions and what they mean. Renaming fields can be done directly from the pseudocode view, while for adding
or rearranging them you’ll likely need to use Local Types or Structures window.

See also:
Hex-Rays interactive operation: Create new struct type3

1 https://hex-rays.com/blog/igor-tip-of-the-week-11-quickly-creating-structures/
2 https://hex-rays.com/blog/igors-tip-of-the-week-117-reset-pointer-type/
3 https://www.hex-rays.com/products/decompiler/manual/cmd_new_struct.shtml

Force calltype

16 Dec2022
& https://hex-rays.com/blog/igors-tip-of-the-week-119-force-call-type/

When dealing with compile binary code, the decompiler lacks information present in the source code, such as function
prototypes and so must guess it or rely on the information provided by the user (where its interactive features come
handy).

One especially tricky situation is indirect calls: without exact information about the destination of the call, the decompiler
can only try to analyze registers or stack slots initialized before the call and try to deduce the potential function proto-
type this way. For example, check this snippet from a UEFI module:

do
1
) = sub_116E@(&vE, v5);

i (12 || (unsis

break;

int8)sub_010(v2, vi, &vc) && 1v6)

)(__inte4))(quord 21048 + 72))(v2);

(*(uoid (__fastcall #*)(__intad)) (quard_2104a + 72))(v11);

11 *#)(void *, _int64 *, _ int64 *))(auord_21D48 + 184))(&unk_20ED0, &8, &v4);
__int64))(quord_21D40 1 72))(v2);

te4, void *, __inte4 *))(qword_21D4@ + 152))(v4, &unk_2@EDB, &v1Zz);
<@a)
if ((unsigned __intR)suh_1121a() R& (unsigned _ int8)suh_11240(AxRAAAARARAIAL))
sub_11870(@x50000000i64, "\nASSERT_EFI_ERROR (Slalus = %r)\n", ;
sub_1114@("u:\\GrantleyPkg\\Acpi\\Dxe\\AcpiPlatform\\AcpiPlatform.c", 346i64, "!EFI_ERROR (Status)");

¥

For several indirect calls involving qword_21D40, the decompiler had to guess the arguments and add casts.

If we analyze the module from the entry point, we can find the place where the variable is initialized and figure out that it
is, in fact, the standard UEFI global variable gBS of the type EFI_BOOT_SERVICES *:

EFI_STATUS _ fastcall UefiBootServicesTableLibConstructor(EFI_HANDLE ImageHandle, EFI_SYSTEM_TABLE
*SystemTable)
{

gImageHandle = ImageHandle;

if (DebugAssertEnabled() && !gImageHandle)

DebugAssert(
“u:\\MdePkg\\Library\\UefiBootServicesTableLib\\UefiBootServicesTableLib.c”,
0x33ui64,

“gImageHandle != ((void *) 0)”);
gST = SystemTable;
if (DebugAssertEnabled() && !gST)

DebugAssert(
“u:\\MdePkg\\Library\\UefiBootServicesTableLib\\UefiBootServicesTableLib.c”,
0x39ui64,

“gST = ((void *) 0)”);
// gBS was qword_21D40
gBS = SystemTable->BootServices;
if (DebugAssertEnabled() && !gBS)

DebugAssert(
“u:\\MdePkg\\Library\\UefiBootServicesTableLib\\UefiBootServicesTableLib.c”,
Ox3Fui64,

“gBS = ((void *) 0)”);
return 0i64;

}

After renaming and changing the type of the global variable, the original function is slightly improved thanks to the type
information from the standard UEFI type library:

Igor’s tip of the week - season 03

16Dec2022

& https://hex-rays.com/blog/igors-tip-of-the-week-119-force-call-type/

do

v2 = sub_116E@(&vE, v5);

if (w2 || (unsigned _ int8)sub_910(v2, vi, &v6) && lv6)
break;

((uoid (_ fastcall #)(__int64))gBS->FreePool)(v2);

v2 = 0i64;

+
while (8);
if (12)

((void (__fastcall *)(__int64))gBS->FreePool)(v11);
return ©;
¥
v8 = v2;
v1e = ((_intéa (_fastcall *)(void *, __int64 %, _ int64 *))gBS->LocateDevicePath)(&unk_20EDO, &v&, &v4);
((void (__fastcall *)(__int64))gBS->FreePool)(v2);

if (vie<e) loff=0xB8; EFI_LOCATE_DEVICE_PATH
return 8; 8: 0008 rcx EFI_GUID *Protocol;
V10 = ((_int64 (_ fastcall *)(__int64, void *, _ int64 *))gBS->HandleProtd 1: 0008 rdx EFI_DEVICE_PATH_PROTOCOL **DevicePath;
if (DebugAssertEnabled() && v16 < @) 2: 0008 rd EFT_HANDLE *Device;
{ RET 0008 rax EFT_STATUS;
if ((unsigned _ int8)sub_11210() & (unsigned _ ints)sub_11240(0x80000eq TOTAL STKARGS SIZE: 32

sub_11070(x80000000i64, "\nASSERT_EFI_ERROR (Status = %r)\n", v10);
DebugAssert ("u:\\GrantleyPkg\\Acpi\\Dxe\\AcpiPlatform\\AcpiPlatform.c", @x15Aui64, "!EFI_ERROR (Status)");

Even though the decompiler now has prototypes of function pointers such as LocateDevicePath (shown in the pop-up)

or FreePool, it has to add casts because the arguments which are passed to the calls do not match the prototype. To tell
the decompiler to rely on the type information instead of guessing the arguments, use the command Force call type from
the context menu:

Lo f#* Add breakpoint F2
Synchronize with »
nd [Copy Ctrl+C
Set call type...
ox foewlope
v Rename field... M
‘or Set field type... ¥
Jump to structure definition... z
Jumnp to xref... X
Jumnp to xref globally... Ctrl+Alt+X
Edit comment... !
Edit block comment... Ins
— Hide casts \

When running the command on the indirect calls, the decompiler also uses the type information to update the types of
the arguments (except those already set by the user), making the pseudocode much cleaner:

do
{
v2 = (EFL DEVICE PAIH PRUIOCOL *)sub_116E@(&v8, vb5);
if (vz || (unsigned __int8)sub_910(v2, vi, &C) && IvG)
break;
gBS->FreePool(vz);
v2 = @i64;
¥
while (v&);
if (w2)
{
£BS->FreePool (vi1);
return 8;
¥
v8 = v2;
18 = gBS->LocateDevicePath(&stru 20EDB, &vs, &va);
gBS->FreePool(v2);
if (vie <0)
return 8;
vle = gBS->HandleProtocol(v4, &stru_20EDe, (void **)&viz);
if (DebugAssertEnabled() 8& vie < ©)

if ((unsigned _ int8)sub_11210() && (unsigned __ int8)sub_l1240(0x3eeeeeeeiscd))
cub_11070(0x30000000i64, "\nASSERT EFI_ERROR (Status - %r)\n", v10);
DebugAssert(“u:\\GrantleyPkg\\Acpi\\Dxe\\AcpiPlattorm\\AcpiPlattorm.c”, @x15Auibd, "!EFI_ERROR (Status)");
}

See also:
Hex-Rays interactive operation: Force call type!

1 https://www.hex-rays.com/products/decompiler/manual/cmd_force_call_type.shtml

Setcalltype

23Dec2022
& https://hex-rays.com/blog/igors-tip-of-the-week-120-set-call-type/

Previously we’ve described how to use available type info to make decompilation of calls more precise
, but there may be situations where you don’t have it or the existing type info does not quite match the
actual call arguments, and you still want to adjust the decompiler’s guess.

One common example is variadic functions (e.g. printf, scanf and several others from the C runtime library, as well as
custom functions specific to the binary being analyzed). The decompiler knows about the standard C functions and
tries to analyze the format string to guess the actually passed arguments. However, such guessing can still fail and show
wrong arguments being passed.

For simple situations, may work, but it’s not always enough. For example, some call-
ing conventions pass floating-point data in different registers from integers, so the decompiler needs to know which
arguments are floating-point and which are not. You can, of course, change the prototype of the function to make the
additional arguments explicit instead of variadic, but this affects all call sites instead of just the one you need.

Another difficulty can arise when dealing with the scanf family functions. Because the variadic arguments to such func-
tions are usually passed by address, any variable type may be used for a specific format specifier. Consider the following
example source code:

struct D
{
int d;
int e;

s

#include
int main()
{
D d;
scanf(“%d”, &d.d);
}

When we decompile the compiled binary, even after creating the struct and changing the local variable type, the follow-
ing output is shown:

int _ cdecl main(int argc, const char **argv, const char **envp)

{
Dd; //

scanf("%d", &);

return 8;

¥

We get &d instead of &d.d because d is situated at the very start of the structure so both expressions are equivalent on
the binary level. To get the desired expression, we need to hint the decompiler that the extra argument is actually an int
*_This can be done using the “Set call type...” action from the context menu on the call site:

scanti"%d4" RAY-

ret B Add breakpoint F2
Synchronize with L4
|._D Copy Ctrl+C
Set call type...
Add vanadic argument Numpad++
Delete variadic argument Mumpad-+-
Rename glebal item... M
Set item type... Y
Jump to xref... X
Edit comment... !
Edit block comment... Ins
Hide casts \
Font...

Igor’s tip of the week - season 03

23Dec2022

& https://hex-rays.com/blog/igors-tip-of-the-week-120-set-call-type/

We can explicitly specify type of the extra argument:

8 Please enter a string X

Please enter the type dedaration |'r|t(“j(cnnstd1a'*cnnstFnrmat,ilt*] v

The decompiler takes it into account and uses the proper expression to match the new prototype:

int _ cdecl main(int argc, const char **argv, const char **enwvp)

{
D d; // [esp+8h] [ebp-8h] BYREF

scanf("%d", ;

return 8;

}

See also: Hex-Rays interactive operation: Set call type3

1 https://hex-rays.com/blog/igors-tip-of-the-week-119-force-call-type/
2 https://hex-rays.com/blog/igors-tip-of-the-week-101-decompiling-variadic-function-calls/
3 https://www.hex-rays.com/products/decompiler/manual/cmd_set_call_type.shtml

Limiting searchto anaddressrange

30Dec2022

& https://hex-rays.com/blog/igors-tip-of-the-week-121-limiting-search-to-an-address-range/

When performing a in IDA, it by default starts from the current position and continues up to the maximum ad-
dress in the database (or to the minimal for searches “Up”). This works well enough for small to average files, but can get
pretty slow for big ones, or especially in case of debugging where the database may include not just the input file but
also multiple additional modules loaded at runtime.

To skip areas you’re not interested in and improve the speed, you can limit the search to an address range. For this, IDA
relies on selection. For example, consider this disassembly snippet:

ROM: @BA0BAFE 8C 47 1w al, 8(a5)
ROM:@00004F2 ©3 AS 47 09 1w a6, 4(a5)
ROM:000004AFE 98 47 1w ad, &(a5)
ROM:@8P084r8 E3 9C E5 FE bne al, a4, loc_4r@
ROM:000004FC 13 87 81 81 la ad, dword_20000418
ROM: 00008500 1C 43 1w a5, 0(ad)

ROM: @0000502 54 43 1w a3, 4(ad)

ROM: 08608504 33 B7 A7 82 mulhu ad, a5, ab

ROM: 00000508 B3 86 A6 82 mul a3, a3, a@
ROM:0800850C 36 97 add ad, ad, a3
ROM:@@00850E B3 87 A7 82 mul a5, a5, a@

ROM: 08008512 89 E7 bnez ad, loc_51C
ROM: 08008514 93 €6 28 82 1i a3, 22h # '™
ROM: 00000518 63 FE F& 82 bgeu a3, a5, loc_554

If you perform a binary search for the value 93, the instruction at 00000514 will be found:

Searching down CASE-INSENSITIVELY for binary pattern:
93
Search completed. Found at 00000514.

However, if you select a range which does not include that address before invoking the search, the search will fail:

ROM: 0@0004F0
ROM: 0eeo4Fe

8 Binary search X

Enter binary search string:

Siring @ “
[Match case @) Hex
[search up () Dedmal
[Eind all occurrences O octal

Cancel Help

ROM: 08808514 93 86 20 @2 11 a3, 22h # '™’

Searching down CASE-INSENSITIVELY for binary pattern:
93

Search failed.

Command “AskBinaryText” failed

Selecting large areas with the mouse or by holding Shift can be quite tedious, so it may be more convenient to use the
1. Move to the start or end of the intended selection and invoke Edit > Begin selection (or press Alt-L).
2. Navigate to the other end of the selection using any means (cursor keys, Jump actions, Functions or Sgments

window, Navigation bar etc.).
3. Invoke the binary search command. The search will be performed in the selection only.

1 https://hex-rays.com/blog/igors-tip-of-the-week-48-searching-in-ida/
2 https://hex-rays.com/blog/igor-tip-of-the-week-03-selection-in-ida/

Igor’s tip of the week - season 03

Manualload

06Jan2023

& https://hex-rays.com/blog/igors-tip-of-the-week-122-manual-load/

To save on analysis time and database size, by default IDA only tries to load relevant parts of the binary (e.g. those that
are expected or known to contain code). However, there may be cases when you want to see more, or even everything
the binary contains. You can always load the file as plain binary and mark it up manually, using IDA as a sort of a hybrid
hex editor, but this way you lose the features handled by the built-in loaders such as names from the symbol table, auto-
matic function boundaries from the file metadata and so on. So it may be interesting to have more granular control over
the file loading process.

To support such scenarios, IDA offers the Manual load checkbox in the initial load dialog.

¥ Load a newfile x
1ot e E - =
Portable executable for SHA (PE) [pe.dil]
MS-DOS executable (EXE) [dos.dil]
Binary file
Processor type (double-cick to sef)
Renesas SH-2A (biy endian) SH2A ~
Renesas SH-3 (big endian) SH3B
Renesas SH-3 (little endian) SH3
Renesas SH-4 (big endian) SH4B
Renesas SH-4 (little endian) SH4
v | Renesas Electronics RL78 series
Renesas Electronics RL78 MCU RL78
~ Renesas M16C Scries v
Analysis
Loading segment D Eratied Kernel options 1 | | Kernel options 2 | | Kemel options 3
Enal
Loading offset [Indicator enabled Processar aptions
Options
[o gments [Load resources
[creale ALAT woup DLL eilyies
[Create imports sqment
p— T Gives more control for some file types

What happens when the option is checked depends on the loader. For example, the PE loader may allow you to pick an-
other load base (image base), choose which sections to load, and whether to parse some optional metadata which could,
for example, be corrupted and result in bad analysis.

X | QW Plesse cortem x

e Load section sdata’ 00002000
] e b s s s (e i wenain i)

The ELF loader behaves in a similar manner

O Plesse enter on ackdress X | O Plesse canfirm x
Please specfy the new mage base e Luad section "LOAD' st BCOUB000..800 100007
= - [Don't dapiey this message sgen (for the database only)
o] [Coma C=1 » Gl
¥ Plense confim | W Please confim X
o Load sechon 'LOAD' st BCUT0000.BC0100807 6 Load section 'LOAD' at 80010080 8C0100407
L] o't dhspiay thes message agan (for ths database anly) 0 onit dsplay this message again (for this database only)
e el e Garcel
¥ Please confum X | W Plesse confm X
o Load section LOAD' ot BCOI00AD. ECO16C927 Load section ‘DSGLH’ (start CraC010000, size (00000080
1 on't dapkay this message agan (or e database only) [T Dorit sl tis message agon (for Sis dotabase oriy]
3 gl =l w e

If you want IDA to always load all PE sections, you can edit cfg/pe.cfg and set the option PE_LOAD_ALL_SECTIONS:

// Always load all sections of a PE file?
// If no, sections like .reloc and .rsrc are skipped

PE_LOAD_ALL_SECTIONS = YES

See also:

1 https://www.hex-rays.com/products/ida/support/idadoc/242.shtml

Igor’s tip of the week - season 03

Opcode bytes

13Jan2023
& https://hex-rays.com/blog/igors-tip-of-the-week-123-opcode-bytes/

When disassembling, you are probably more interested in seeing the code (disassembly or pseudocode) rather than the
raw file data, but there may be times you need to see what actually lies behind the instructions.

One option is to use , possibly docked and synchronized with IDA View.

But probably a simpler solution is the Number of opcode bytes.

¥ IDA Options e

Disassembly Andysis Ciusstefenes Stings Browser Giagph Luminag Misc

Address representation Display disassembly bne parts
[Function offscts [tine prefixes (non graph)
Inchide segment addresses [Stack ponter

Use segmenl names B Comments

7 —
Display Sssssenbly hnes Bepeatable comments

[T Auto comments
Empty fines
Borders between dotafeod (ron-graph) Pumer of eponge bytes fr-graph)

] Basic block boundaries (non-graph)

Instructon indentabon (non-graph) |6
["1 Source ine numbers Comments ndentaon fron-graphi) [y
Try blok nes

Right margn (non-graph) 250

Line prefix example: seg000:0FE4 Sppoces for Labedation "

Low suspiciousness imil_[0xC50

bigh suspiciousness limit |0xCAC

o[oo | [

By setting it to a non-zero value, IDA will use the specified number of columns to display the bytes of the instructions at
the start of the disassembily line.

.text_vle:eeeeeers [7C o 2A 17 add r6, re, rs
_text_vle:@00000FS |7C 1F 28 38 and r31, r@, r5
_text_vle:@00@00FC |7F C4 D8 9 iseleq r3@, rd, r27
.text_vle:@0000100 |44 50 se_or re, rs
_text_vle:@0000102 |7F AS FO 78 ande r8, r29, r30
_text_vle:@0000106 |7F ES 30 79 andc. 5, r31, ré
.text_vle:@000010A |7C Co 00 73 andc re, ré, re
.text_vle:@@eeeleE |7C €3 30 1f | isellt r6, r3, ré
_text_vle:@0000112 |7C BE ES 56 subf 5, r30, r29
_text_vle:00060116 |2A 00 se_cmpi r@, 8
.text_vle:@eeeel1s |46 SE se_and r3e, rs
_text_vle:@000011A |7C C4 30 1F isellt r6, rd, ré
_text_vle:@00@011F |45 DE se_andc r3@, r29
.text_vle:@0000120 |7C @6 00 D@ neg re, ré
text_vle:00000124 |oC 36 se_cmp 6, r3

If the instruction is longer than the specified number of bytes, extra lines will be used to display the remainder of the

opcode:
A 00 push [} 5 dwFlags
41 @8
85 @ test eax, eax

mov esi, eax
call ds:Getlastl
push eax

coll

mov [esi], eax
pop ecx

If you prefer to have IDA simply truncate the long opcodes instead of using extra lines, specify a negative value (e.g. -4).

Showing opcode bytes by default

If you prefer to always see opcode bytes, you can use the OPCODE_BYTES setting in ida.cfg (either the one in your IDA
install, or the override in). This enables opcode bytes in the text view only; for the graph view use the
setting GRAPH_OPCODE_BYTES.

Igor’s tip of the week - season 03

13Jan2023
& https://hex-rays.com/blog/igors-tip-of-the-week-123-opcode-bytes/

v]
TEEE =0 27 dieplay this many Lnstisctionfdats bytes 10 Lo disable)

7 tha dafault sonfiguratien in the regiatry may

17 ovarcide this value
fes— =16 7/ indentation af inatruetions

'’

1 Tt swpcesentaticn 1n the gcech mode

FATE_COMMINTS INDENTION = 21 17 Tnduntion of shorl commnls
RARI NI 10N -0 4/ Indsnrisn af instrucrions

CHARGIN - 7/ Max moo wideh L}

aRATH_wiw_LIMERERIXES - M0 77 3how Line prefixes (Like 100D:6080)
GRAPIH_SHGW XREFS -0 /7 shew ne xrafs (use node title buttan for them)
s _SEEERE] -0 /7 dont diplay lnstruction/dats bytes

Another possibility is set up the opcode bytes (and other disassembly options) as you like and save the current deskiop
layout as default?; it will be used for all new databases.

1 https://www.hex-rays.com/products/ida/support/idadoc/605.shtml

2 https://hex-rays.com/blog/igors-tip-of-the-week-38-hex-view/

3 https://hex-rays.com/blog/igors-tip-of-the-week-25-disassembly-options/
4 https://hex-rays.com/blog/igors-tip-of-the-week-22-ida-desktop-layouts/

Scripting examples

20Jan2023
& https://hex-rays.com/blog/igors-tip-of-the-week-124-scripting-examples/

Although IDA was initially created for interactive usage and tries to automate as much of the tedious parts of RE as pos-
sible, it still cannot do everything for you and doing the still necessary work manually can take a long time. To alleviate
this, IDA ships with IDC and IDAPython scripting engines, which can be used for automating some repetitive tasks. But it
can be difficult to know where to start, so let’s see where you can find some examples to get started.

IDC samples
Although IDC is quite old fashioned, it has the advantage of being built-in into IDA and does not require any additional
software. It is also the only scripting language available in . For some sample IDC scripts, see the idc directory

in IDA’s install location:

This

PC > Local Disk(C) » ProgramFiles » IDAPro&l » ide

rmemepy.idc

ndkide

(=]}

loaddef.idc xrefuidc

loadsym.idc
maritestide

Please note that some of these files are not stand-alone scripts but are used by IDA for various tasks such as
(ida.idc, onload.idc) or batch analysis (analysis.idc).

A few user-contributed scripts are also available under the “User contributions” section in our . Note
that due to their age and the big which unified IDA APl and IDC, some of them may need adjustments to
run in recent IDA versions.

IDAPython examples
IDAPython project had examples from the beginning, and you can find them , but we're also
shipping them with IDA, in the python/examples directory.

gram Files » IDAPro81 » python » examples v D

analysis
core
debugging
hexrays
idbhooks
idbs
idphooks
pyqt
uihooks
widgets
| index
L index
index
| index.md
| README.md

The provided index.html can be opened in a browser to see the list of the examples with short descriptions and also a
list of used IDAPython APIs/keywords to help you find examples of a specific API's usage.

Igor’s tip of the week - season 03

20Jan2023

& https://hex-rays.com/blog/igors-tip-of-the-week-124-scripting-examples/

[IDAPython examples x
< C R OFie | C/frogram®20F.. 75 V= @ & El
IDAPython examples:

Calegory: analysis
= dump_func_info: Dump (some) information about the current function.

Dump some of the most interesting bits of information about
Lhe funclion we are currently looking at.

» Category: analysis
+ Sumumary: Dump (some) information about the current function.
+ View on GitHub
= APIs used

o ida_funcs.FUNC_FRAME
ida_funes. FUNC_LUMINA
ida_funcs. FUNC_OUTLINE
ida_funcs.FUNC_THUNK
ida_funcs.get fehunk
ida_funcs.is_func_entry
ida_funcs.is_fane_tail
ida_kernwin.get_screen_ea

© o 00000

Category: core

» actions: Custom actions, with icons & tooltips

= add_hotkey: Iriggering bits of code by pressing a shortcur

+ add_idc_hotkey: Triggering bits of code by pressing a shortcut (older
version) =

There are also countless examples of IDAPython scripts and plugins created by our users. Some of then can be found
on our plugin contest pages® and plugin repository’, while even more might be found on code-sharing websites (GitHub,
GitLab etc.), or individual authors’ websites and blogs. Oftentimes, searching for an APl name on the Web can bring you
to examples of its usage.

In addition to the examples made just for demonstration purposes, there are a few Python-based loaders and proces-
sors modules shipped with IDA. They can be found by looking for .py files under loader and procs directories of IDA.

1 https://hex-rays.com/blog/igors-tip-of-the-week-116-ida-startup-files/

2 https://hex-rays.com/blog/igor-tip-of-the-week-08-batch-mode-under-the-hood/
3 https://hex-rays.com/download-center/

4 https://hex-rays.com/products/ida/news/7_0/docs/api70_porting_guide/

5 https://github.com/idapython/src/tree/master/examples

6 https://hex-rays.com/contests/

7 https://plugins.hex-rays.com/

Structurefield representation

27Jan2023

& https://hex-rays.com/blog/igors-tip-of-the-week-125-structure-fields-representation/

When dealing with structure instances in disassembly, sometimes you may want to change how IDA displays them, but
how to do it is not always obvious. Let’s have a look at some examples.

Win32 section headers

Let’s say you have loaded the PE file header using , or found an embedded PE file in your binary, and want
to format its PE header nicely. Thanks to the , you can import standard Win32 structures such as
or and apply them to the header area:

HEADER : 00400320 |

. 7 dup(@)

However, because the Name field is declared simply as a BYTE array in the original structure, IDA shows them as bytes
instead of nice readable string. Without the struct, we could use the Create string (A) command, but it is also possible to
show the string as part of the structure instance.

Changing structure field representation

To change how a specific fiield should be formatted in the disassembly, go to it in the structure definition in the Struc-
tures window and use Edit or the context menu. For example, use the String (A) action to have IDA format the Name byte
array as a string.

, copyof 212
06666000

Undo Stnng Ctrle 2

B Delete struct type... Del

; e &% Expand structtype... Curl«E {R. PRESS CTRL-NUMPAD+ TO EXPAND]

& Dte B copyef s

b Struct yar... Alts

When you edit an imported structure for the first time, you may get this warning:

| ¥ Please confirm X

The current structure is just a copy of a local type.
| If you edit it from the struct view, IDA will sync the changes

back to the local type and will consider the type as manually defined
by the user, We recommend you to edit the local type instead
of editing the structure, Do you want to continue?

[Don't display this message again

Because the field type representation cannot be specified in Local Types, we have to edit the structure, so answer Yes
to continue. A dialog to specify the string length will be displayed, just confirm it:

Igor’s tip of the week - season 03

27Jan2023

& hitps://hex-rays.com/blog/igors-tip-of-the-week-125-structure-fields-representation/

O Convert to string *

Start offset H]
End offset t OxB

Array element size
Maximal possible size:
Current array size

Suggested array size :

oo 00

o fin el)

Items on a line 1] w (0-max)

Array size

Element print width -1 ~ {-1-none,0-auto)

Options Indexes

8 Use "dup” construct © Decimal

(] signed elements () Hexadecimal
(] Display indexes () Octal

@ create as array () Binary

20000000

80000A0 TMAGE_SECTION_HEADER struc ; (sizeof-ax28, align-ox4, copyof_242)
20000000 5 XREF: HEADER:@B4002F&/r
_eeoaanen i HEADER:0A4PA320/r ...
80000000 Nans db & dup(?) ing

80000005 Misc _TMAGE_SECTION_HEADER: : $39DFBA39B6D121CDFC1ACEGEC995549C ?
860600GC VirtualAddress dd ?

80000010 SizeOfRawbata dd ?

80000814 PointerToRawData dd 2

90000018 PointerToRelocations dd ?

©80000@1C PointerTolinenumbers dd *

00000020 NumberOfRelocations dw ?

0000022 NumberOfLinenumbers dw ?

80060024 Characteristics dd ?

80000025 TMAGE_SECTION_HEADER ends

86000028

And the struct instances in the binary will now show the first field as a string:

> NEADER: 00400215 TPAGE_SECTION HEADER « texe', <ol 100ohs, 100h, iaaieh, Ceoh, 0, 0, \
WEADER 0480215 @, 6, Gooaozen>

> NEADER: 0800 320 IPAGE_SECTION HEADER < ‘data’, <2a0wons, of Z000h, 15aedh, OF3006h, 0, \
WEADER 00320 @, 6, 0, oLooashy

> NEADER : 0500 305 IPAGE_SECTION HEADER ¢ ‘113", c1000h>, 116000k, 206h, 106406h, ©, 8, \
WEADER : 00488345 A >

> HEADER: e0300 370 IPAGE_SECTION HEADER <’ .rdata’, <190¢h>, 117600h, 206n, 106L0%, @, U,\
WEADER 00480370 9. 0, o >

> HEADER: e0400 395 IPAGE_SECTION HEADER < |idats’, <3006h>, 116006h, J00eh, 106£eeh, 8, \
HEZDER 130420393 o, 0, 0, sseosadsns

* HEADER: 83480300 TMAGE_SECTION HEADER «.cdata’, <3083h», 11880%h, 2450h, 169500k, 8, \
HEaDER 0040030 a, 0, a, sboopasons

+ MEADER:002003E8. TRAGE SECTION WEADER ¢ .rsrc”, «24000h>, 11E600h, 2400h, 1CA0h, o, \
WEADER 00400365 a, 0, a, soopasons

> HEADER 00400410 THAGE SECTION HEADER « reloc’, c110o0hs, 182008, 10200%, 1308609, 0,1
HEADER 0420410 a, 0, o, seo0eoths
WEADER 0400435 algn 10000

In addition to strings, you can ofcourse change representation of other structure fields similarly to operand representa-
tion® for instructions. For example, you can change the SizeOfRawData field to be printed in decimal instead of the default

sooooo1s pints) Comy e

2000013 SR e b et s

e neds <oty

provey

eoooon s charac (Al st b s

[e ——

wevvews 5 (o 18 Ditsiuc tpe- L]
00000058 5 pemsamaype ou

Sovnen 2L PO G e

See also:
IDA Help: Assembler level and C level types®
Igor’s tip of the week #46: Disassembly operand representation?

1 https://hex-rays.com/blog/igors-tip-of-the-week-122-manual-load/

2 https://hex-rays.com/blog/igors-tip-of-the-week-60-type-libraries/

3 https://learn.microsoft.com/en-us/windows/win32/api/winnt/ns-winnt-image_nt_headers32

4 https://learn.microsoft.com/en-us/windows/win32/api/winnt/ns-winnt-image_section_header
5 https://hex-rays.com/blog/igors-tip-of-the-week-46-disassembly-operand-representation/

6 https://www.hex-rays.com/products/ida/support/idadoc/1042.shtml

7 https://hex-rays.com/blog/igors-tip-of-the-week-46-disassembly-operand-representation/

Non-returning functions

03Feb2023

& https://hex-rays.com/blog/igors-tip-of-the-week-126-non-returning-functions/

Some functions in programs do not return to caller: well-known examples include C runtime functions like exit(),
abort(), assert() but also many others. Modern compilers can exploit this knowledge to optimize the code better: for
example, the code which would normally follow such a function call does not need to be generated which decreases the
program size. Other functions, which call non-returning functions unconditionally also become non-returning, which can
lead to further optimizations.

Well-known functions
IDA uses function names to mark well-known non-returning functions. The list of such names is stored in the file cfg/
noret.cfg, which can be edited to add more names if necessary:

[RT— o x
fie St e L

I

; This Tile contains the names of non-returning functions.

: The heading and trailing underscores and dots must not be specified

:IDA wil ™

p them from th

; Manglead w1l as e spasol £ lad
; Damangled names use STIict COMPATiSOn (UNderscoras and dOTS are not ignored) .

: Tha Fila farmat 1 vary simpla: ona fanction nama par 1ina

std inate
std: sunexpacted
std: :_xlangth_srror

Marking non-returning functions manually

Instead of editing noret.cfg, you can also mark a function as non-returning manually on a case-by-case basis. This can
be done by editing function properties: Edit > Functions > Edit Function... in the main menu, Edit Function... in the context
menu or the Alt- P shortcut.

eyt ———— _ . W Edit function ®
T Ea Rename N | | tame of fncsan et
ey Pascal string | Ernaddess
- —
% Jump to operand Enter | O function
> . . | [trary firx.
\El Jump in a new window Alt+Enter Enter size of (n bytes) [stase func
s Jump in a new hex window e T =2 - (1P bosed frame
| saved regsters 00 v o0 eguek to 52
Hll Jump to xref to operand... X | e o . Cruzyse
. = - a
3 List cress references to... Cirl+X | | et | Sifei e
- | o[emn ek
List cross references from... Ctrl+)
;5 1f | Edit function... Alt+P |
i o Settypen Y
= Hide Ctrl+ Numpad+-
E Graph view
H .
; :%g Proximity browser Numpad+-
» 1 -
x Undefine U
iﬂ- Add breakpoint F2

Another option is to edit the function’s prototype and add the

Identifying no-return calls

Incorrectly identified non-returning calls may lead to various problems during analysis: functions being truncated too
early; decompiled pseudocode missing big parts of the function and so on. One option is to inspect each function being
called to see if it has the Does not return flag set (or Attributes: noreturn mentioned in a comment) but this can take a
long time with many calls. So there are indicators which may be easier to spot:

¢ In the text view, look for dashed line after a call; it indicates a break in the code flow which means that the execu-
tion does not continue after the call, i.e. it does not return.

mowv rdi, [rbp+var_B8]

call _swift_bridgeObjectRelease

mov rdi, [rbp+var_A8]

call _swift_release

mov edi, 1 ; status

call _exit
T E—
loc_16E6: ; CODE XREF: main+54tj

Igor’s tip of the week - season 03

Non-returning functions

03Feb2023

& https://hex-rays.com/blog/igors-tip-of-the-week-126-non-returning-functions/

¢ In the graph view, when a node which ends with a call has no outgoing edge, this means that the call does not

return.
mov rdi, [rbp+var_C@]
call _swift_bridgeObjectRelease
mowv rdi, [rbp+var_B8]
call _swift_bridgeObjectRelease
mowv rdi, [rbp+var AZ]
call _swift_release
mowv edi, 1 ; status
call _exit

¢ In the pseudocode it’s not always obvious, but calls to no-ret functions usually end a compound statement or the
whole function. You can also switch to the disassembly if the function looks suspiciously short and look for the above
tell-tales.

Enabling or disabling no-return analysis

If you find that IDA’s treatment of non-returning functions does not work well with your specific binary or set of binaries,
you can turn it off. This can be done in the first set of the at the initial load time or afterwards. Con-
versely, you can enable it for processors which do not enable it by default.

1| ida.ctg Motepad

ﬂ Kernel analysis options 1 >

File Edit Format View Help

Jfmmmmnns - -

) #ifdel _ H) // Hitachl SH3 processor
Trace execution flow
ANALYSIS = OxDFFFSFB7ULL // Don'L create [unclior
. s b n
Mark typical code sequences as code // (PE sxecs have many L

DUMMY_NAMES_TYPE = NM_EA

Locate and create jump tables

SH3_INLINE_IMMVALS = YES // Pul lhe immediales lc
Control flow to data segment is ignored andif s/ sm3
Analyse and create all xrefs i o - .

Hifdef _ MIPS // MTPS processor
Delete instructions with no xrefs ANALYSIS ~ OxDFFFDFFULL

// Disabled:
Create function if data xref data->=code32 exists // AF PURDAT 0xODOOODDE Contral flow to data segment is=

N // AF VERSP 0x00002000 Pertorm full SP analysia. (\ph{
. . ; //VAF ANORET 0x00004000 Pertarm 'no retnrn' analysis

Create functions if call is present // AF DODATA Ux20000000 Coagnlate data segs at the tin=

Create function tails

Create stack variables

Propagate stack argument information
Propagate register argument information
Trace stack pointer

Perform full stack pointer analysis

I [CliPerform ‘no-return’ analysis:

Try to guess member function types

concal | [ri

If you need to permanently enable or disable it for all new databases, edit the ANALYSIS value in ida.cfg to include or not
the AF_ANORET flag. NB: you should edit the value under #ifdef for the specific processor you need.

See also:

1 https://hex-rays.com/blog/igors-tip-of-the-week-52-special-attributes/
2 https://hex-rays.com/blog/igors-tip-of-the-week-98-analysis-options/
3 https://www.hex-rays.com/products/ida/support/idadoc/1729.shtml

Igor’s tip of the week - season 03

Changing functionbounds

10Feb2023

& https://hex-rays.com/blog/igors-tip-of-the-week-127-changing-function-bounds/

When analyzing regular, well-formed binaries, you can usually rely on IDA’s autoanalysis to create functions and detect
their boundaries correctly. However, there may be situations when IDA’'s guesses need to be adjusted.

Non-returning calls

One example could be calls to . Let’s say a function has been misdetected by IDA as non-return-
INg:
- A]

=]

|ADD RO, SP, #9x38+var 1C

STR RA, [SP,#ax3&+var_30]

IMOVS RO, #Ox20

MOV R1, RS

STR RO, [SP,#0x38+var _34]

MOV R2, R18

LOR R, =(off_4BBA34 - 0%27rD38)

MOV R3, RS

|ADD Re, PC ;

LDR RO, [RE] ;

STR RO, [SP,#0x38+var 38]

MOV RO, R4

BL sub_2800F6

CMP RO, #2

BEQ loc_27FDD8
e =)| W=
LDR R1, 38+var MOV
ADD R2, MOV
ADD R3, @ BL
MOV RS,

| Erxn|
v sub_27FB24

But on further analysis you realize that it actually returns and remove the no-return flag. However, IDA has already trun-
cated the function after the call and now you need to extend it to include the code after call. How to do it?

Recreating the function
This is probably the quickest approach which can be used in simple situations:

1. Go to the start of the function (for example, by double-clicking the function in the), or via key se-
quence Ctrl- P, Enter.

2. Delete the function (from the Functions list), or Ctr1-P, Del. If you were in Graph view, IDA will switch to the text
view.

3. Create it again (Create function... from context menu), or press P.

This works well if the changes were enough to fix the original problem. You may need to repeat this a few times when
fixing problems one by one. Note that deleting the function may destroy some of the information attached to it (such as
the function comment), so this is not always the best choice.

Editing function bounds
The Edit function dialog has fields for function’s start and end addresses:

Rename N
1| Editfunction... Al P
= Hide Ctrl Numpad-+ -
M Guph
£S5/ BEphvion ¥ Lait tunction X
R, Proximity browser
XK Undefine tisme of functon | EETETETINTEIIT
Ol Hunto cursor
Ww¥ Add write trace -l [oges not retun
nF Add jeadfwiitetrace | co DEFAULT] Ear uscrsen
»T Add execution trace O] wbrary finc
B Add breakpoint Enter sie of nbyted)
W rets graph to.. Local yarisbles arca 0x38
T sirefs qraph from.. Saved pegieters ™
Synchronize with purped bytes s
(e Frame pointer defta o0
- S

They can be edited to expand or shrink the function, but there are some limitations:
1. The new function bounds may not intersect with another function or a . They also may not cross a
segment boundary.
2. The function start must be a valid instruction.

Keep in mind that the end address is exclusive, i.e. it is the address after the last instruction of the function.

Igor’s tip of the week - season 03

Changing functionbounds

10Feb2023
& https://hex-rays.com/blog/igors-tip-of-the-week-127-changing-function-bounds/

Changing the function end

To move the current or preceding function’s end only, you can use the hotkey E (Set function end). If there is a function
or a chunk at the current address, it is truncated to end just after the current instruction. If the current address does
not belong to a function, the nearest preceding function or chunk is extended instead. If the extension causes function
chunks to be immediately next to each other, they’re merged together.

For example, consider this situation:

A

[sub_2/1818

The instructions in the red rectangle should be part of the function but they’re currently “independent” (this can also
be seen by the color of the address prefix which is brown and not black like for instructions inside a function). To make
them part of the function, we can move its end to the last one (0027FD6A). Putting the cursor there and invoking Edit >
Functions > Set function end (shortcut E) will move the function end from 0027FD44 to ©027FD6A. Because this makes the
function adjacent to its own chunk, IDA merges the chunk with the function and the function is expanded to cover all
newly reachable instructions.

See also:

1 https://hex-rays.com/blog/igors-tip-of-the-week-126-non-returning-functions/
2 https://hex-rays.com/blog/igors-tip-of-the-week-28-functions-list/

3 https://hex-rays.com/blog/igors-tip-of-the-week-86-function-chunks/

4 https://www.hex-rays.com/products/ida/support/idadoc/485.shtml

5 https://www.hex-rays.com/products/ida/support/idadoc/487.shtml

Igor’s tip of the week - season 03

Stringlist

17Feb2023
& https://hex-rays.com/blog/igors-tip-of-the-week-128-strings-list/

When exploring an unfamiliar binary, it may be difficult to find interesting places to start from. One common approach

is to check what strings are present in the program - this might give some hints about its functionality and maybe some
starting places for analysis. While you can scroll through the listing and look at the strings as you come across them, it is
probably more convenient to see them all in one place. IDA offer this functionality as the Strings view.

Opening String list

To open the list, use the menu View > Open subviews > Strings, or the shortcut shift- F12. Note that the first time IDA

will scan the whole database so it may take some time on big files. If you have a really big binary, it may be useful to
before invoking the command will so that the scan is limited to the selection.

] IDA View-A [Strings o @ Hex View-1
Address “Length Tpe Sting)
[5] HEADER:0000000140000210 00000008
F=] HEADER:0000000140000238 00000008
=] HEADER:0000000140000260 00000008
[51 HEADER:0000000140000288 00000008
[=] HEADER:00000001400002B0 00000008
] HEADER:DUO0000 140000208 00000008
[51 HEADER:0000000140000300 00000008

lext
rdata
data
.pdata
_RDATA
rsre
Jeloc

C
C
C
C
C
C
C
=] rdata:00000001400252F0 00000020 C Cannot rcad Table of Contents\n
[51 .rdata:0000000140025414 0ooooLL 7 C 1211
51 rdala:0000000140025420 00000041 C Failed o extract %s: inflatelnit0 failed with return code %din
(=] rdata:0000000140025470 00000042 C Failed to extract %s: failed to allocate temporary input bufferl\n
[51 .rdata:0000000140025484 0ooooLL 7 C malloc
51 .1data:00000001400254C0 00000043 C Failed tu extract %s: failed Lo allocale temporary oulput bufferfn
[5] rdata:0000000140025510 00000041 C Failed to extract %s: decompression resulted in return code %d!\n
[51 .rdata:0000000140025558 000LoL3C C Failed to extract %s: failed to allocate temporary butferi\n
51 rdata:0000000140025598 00000032 C Failed 1o extract %s: failed to read data chunk\n
(5] .rdata:00000001400255CC 00000006 C fread
B rdata:00000001400255D8 C Failed to extract %s: tailed to wnite data chunki\n
51 rdata:000000014002560C 00000007 C Twrite
5] rdata:0000000140025618 00000034 C Failed to extract %s: failed to open archive file!\n
[5] rdata:0000000140025650 00000038 C Failed to extract %s: failed to seek to the entry’s datal\n

The view includes the string’s address, length (in characters, including the terminating one), type (e.g. € for standard
8-bit strings or c16 for Unicode (UTF-16)), and the text of the string. Double-clicking an entry will jump to the string in the
binary, and you can, for example, check the to see where it’s used.

String list options
The default settings are somewhat conservative so if you think some items are missing (or, conversely, you see a lot of
useless entries), changing scan options can be useful. For this, use “Setup..” from the context menu.

¥ Setup string window bt o Display only defined strings will have IDA include only explicitly
defined string literals (e.g. strings discovered in a middle of undefined
areas won't be included).

[linisplay only defined strings e Ignore instructions/data definitions makes IDA look for text inside
code or non-string data.

o Strict ASCII (7-bit) strings option shows only strings with characters

List setup

[T] 1gnore instructions/data definitions

[strict ASCII (7-bit) strings in the basic ASClII range.
Alowed string types ;sgg\iﬁed string types lets you choose what string types you are inter-
C-style ¢ Minimal string length sets the lower limit on the length the string must

have to be included in the list. Raising the limit may be useful to filter

Unicode C-style (16 bits) -
out false positives.

[c-style (32 bits)

[Pascal style Note that you will likely need to invoke “Rebuild...” from the context menu to
[] Pascal style (16 bits) refresh the list after changing the options.

[] wide pascal

[wide pascal (15 bits)
[] Delphi See also:

[pelphi (15 bits)

Minimal string length
Cancel Help

1 https://hex-rays.com/blog/igor-tip-of-the-week-03-selection-in-ida/
2 https://hex-rays.com/blog/igor-tip-of-the-week-16-cross-references/
3 https://www.hex-rays.com/products/ida/support/idadoc/1379.shtml

Igor’s tip of the week - season 03

Searchingfortextindatabase

24Feb2023
& https://hex-rays.com/blog/igors-tip-of-the-week-129-searching-for-text-in-database/

Using the is one way to look for text in the binary but it has its downsides: building the list takes time for big
binaries, some strings may be missing initially so you may need several tries to get the options right, and then you need
to actually find what you need in the list.

If you already know the text you want to find (e.g. from the output of the program), there is a quicker way.

Using binary search for text

The binary search action can be invoked via Search > Sequence of bytes... menu, or the Alt- B shortcut. Although its
primary use is for binding known byte sequences, you can also use it for finding text embedded in the binary. For this,
surround the text string with double quotes (“). The closing quote is optional.

: ©8 Binary search X

Enter binary search string:

String "Jan| o
("] Match case O Hex
("] search Up () Decimal
("] Eind all occurrences () octal

String encoding UTF-8 (default 8-bit) ~

I OK 1 Cancel Help

Once a quote is present in the input box, the String encoding dropdown is enabled. It allows you to choose in which
(s) to look for the string.

After confirming, IDA will print in the Output window the exact byte patterns it’s looking for:
Searching down CASE-INSENSITIVELY for binary patterns:

UTF-8: 4A 61 6E

UTF-16LE: 4A 00 61 00 6E 00

UTF-32LE: 4A 00 00 00 61 00 00 00 6E 00 00 00
Search completed. Found at 1001A9C4.

You can also mix string literals and byte values. For example, to find “Jan” but not “January”, add @ for the C string termi-
nator:

.rdata:10010418 a2
rdata:18818A18 44 88 61 88 F

-
61 68 72 83 20.

2 a
65 80 6F 03 20,
aliyhn_0:
68 80 79 03 20.

4 u;
44 88 75 88 6C
a

T ouout
Searching down CASE-INSENSITIVELY for binary pattar oK Camerd Help
UTF-2: 4A E1 EE 82
UTF-16LE: 44 00 61 00 GE 00 00
UTF-32LE: 44 BA BA B0 61 B4 B4 BA 6F 48 88 68 88
Search complated. Found st 10018418

To continue the search, use Search > Next sequence of bytes..., or shortcut Ctrl- B.

See also:

1 https://hex-rays.com/blog/igors-tip-of-the-week-128-strings-list/

2 https://hex-rays.com/blog/igor-tip-of-the-week-13-string-literals-and-custom-encodings/
3 https://hex-rays.com/blog/igors-tip-of-the-week-48-searching-in-ida/

4 https://www.hex-rays.com/products/ida/support/idadoc/579.shtml

5 https://www.hex-rays.com/products/ida/support/idadoc/528.shtml

Igor’s tip of the week - season 03

Sourceline numbers

03Mar2023

& https://hex-rays.com/blog/igors-tip-of-the-week-130-source-line-numbers/

Debug information, whether present in the binary or , can contain not only symbols such as function or
variable names, but also mapping of binary’s instructions to the original source files. It can be used by IDA’s debugger for
, but what if you want to see this mapping during static analysis?

Enabling source line number display
Assuming the line number info was available and has been imported, it can be enabled in the Options > General... dialog,
Disassembly tab:

| % 1DA Options ®

Disassembly Analysis Crossreferences Stings Browser Graph Lumina ¢ ¥

Address representation Display disassembly line parts
[Eundtion offsets & Line prefixes (non-graph)
B Include segment addresses Stack pointer

B use segment names B comments

B Repeatable comments.

Display disassembly lines —
"] Auto comments

B Empty lines
I8 Borders between data/code (non-graph)

Basic black boundarles (non-graph) Instruction indentation (non-graph) 16

P T—
Comerts nderaton (ron k) 40

B Ty block lines

Number of opcode bytes (non-graph) 0

Right margin (non-graph) P
Line prefix example: seg000:0FES Spaces for tabulation 4
Low suspiciousness limit 0x401000
High suspiciousness liml 0z428000
OK Cancel Help

Once enabled, IDA will add automatic comments with the file name and line number in the disassembly listing:

. TEXTIOBIRLIED mov ebx, [ebpeargy]
-text :@B4B14EC edi, [ebprargc]
£axt:004014EF { wline “ar cp

- TEXTIOBIRLIEF T

-toxt:AB4B14EF
£axt:0040L4EF
L TEXTIGRIRLAFE
toxt :8B3B14FE

J

L REKTIORIRL4FE

[ebpssusfin], offsat unk_410128
loc_se1587

tent :883814F8 loc ; CDE XREF: _mainsg5ij
text 0B4O14FE mov eax, [ebx+d]

LT 0040141 L mov dl, [waxe1)

“text 08101501 sus I

“text 08481502 j2 short lac_491517

et 100401506 b 1, 4

“text:oBaRIsEy iz short loc_401523

“text ;08481588 e a7

_taxt 0040150 iz short loc_40152¢

® al, wah

short Toc_481558
short loc_a155F

anpersand, 1

; CODL XRLF: _mainé24tj

short lac_401583

- text ;98491523

.TexTI0401523
.text ;88481523 loc_181523: ; CODE XREF: _main=2st

ftout: 08481523 mov eew, [ebxed]
L TEXTIOR401526 ecx, 2
. Text 98481529 [ebpssuffix], ecx

add
L TexT:0040152C ¥ short loc_s01563

text :084B152E
- text:0040152€

To enabile this for all new databases by default, change SHOW_SOURCE_LINNUM setting in ida.cfg.

Importing line numbers from DWARF

DWARF debug format can also include line number information, but by default it’s skipped because it’s rarely needed in
the database itself and can take a long time to load for big files. If you do need it, you should enable the corresponding
option when prompted by IDA:

Igor’s tip of the week - season 03

03Mar2023

& hitps://hex-rays.com/blog/igors-tip-of-the-week-130-source-line-numbers/

;
©F DWARF info found X

Load DWARF debug information?

& Global names

s Functions
D Use function bounds

B Types (uncheck for speed)

& Apply calling conventions

& Allow __usercall

B Function prototypes are definitive

B Import file names/line numbers

| Yes | Mo

To always import line numbers from DWARF debug info, enable DWARF_IMPORT_LNNUMS in cfg/dwarf.cfg.

See also:
Igor’s tip of the week #55: Using debug symbols?
Igor’s tip of the week #85: Source-level debugging*

1 https://hex-rays.com/blog/igors-tip-of-the-week-55-using-debug-symbols/
2 https://hex-rays.com/blog/igors-tip-of-the-week-85-source-level-debugging/
3 https://hex-rays.com/blog/igors-tip-of-the-week-55-using-debug-symbols/
4 https://hex-rays.com/blog/igors-tip-of-the-week-85-source-level-debugging/

Advancedfiltersinchoosers

10Mar2023

& https://hex-rays.com/blog/igors-tip-of-the-week-131-advanced-filters-in-choosers/

We’ve covered choosers

Advanced filters

and talked about searching, sorting and filtering. The default filter (Ctrl- F shortcut)
is pretty simple: it performs case-insensitive match on any column of the list.

Advanced filter dialog is accessible via the context menu entry “Modify filters...” or the shortcut Ctr1-Shift-F

Delete function(s)...
Edit function...

Copy
Copy all

Quick filter
Modify filters...

Tumn on synchronization

= =

Show demangled
Columns...
Show folders

Add breakpoint
Delete breakpoint
Enable breakpoint

o= "R X "%

Disable breakpoint
Lumina
Font...

In the dialog you can:

K Modiy itars -

Del
Ctrl+E

Match cse (] Reqular expression

Fiter st

Ctiec :
Ctrl+Shift+Ins

Condition Value

Ctrl+F
Ctrl+Shift+F

¢ match any or a specific column;
o perform an exact match (is/is not) or partial (contains/doesn’t contain, begins/ends with);
o perform a lexicographical comparison (less than/more than);

¢ decide whether a specific filter excludes, includes, or highlights matches;
¢ disable and enable filters individually;

¢ use case-sensitive matching or regular expressions.

Examples

M columin () [thea

o x

The following set of filters excludes functions which start with sub_, or situated in segments extern (external functions)
and .plt (PLT thunks for external functions). This way only the functions defined inside the binary which have non-

are shown:

Segmeet Stac Length
i OOELC 0000000
T

.............

W0IC

Locsks

ooocnc

o000 1 rextiewerEses]

Highlight any function with name ending in _NNN where NNN is a sequence of decimal numbers:

The highlight color can be changed by clicking the “Highlight button”.

Show only functions which were detected by IDA as

Igor’s tip of the week - season 03

10Mar 2023

& hitps://hex-rays.com/blog/igors-tip-of-the-week-131-advanced-filters-in-choosers/

R i

it

I
3
mmnmmmmi

UEH TR
UL

]
s
poes
ey
iz
i
b
o
foord

i

NOTE: the examples listed apply to the Functions list but these filters are available in any chooser (list view) in IDA: Im-
ports, Exports, Names, Local Types etc.

See also: Igor’s tip of the week #36: Working with list views in IDA4

1 https://hex-rays.com/blog/igors-tip-of-the-week-36-working-with-list-views-in-ida/
2 https://hex-rays.com/blog/igors-tip-of-the-week-34-dummy-names/

3 https://hex-rays.com/blog/igors-tip-of-the-week-126-non-returning-functions/

4 https://hex-rays.com/blog/igors-tip-of-the-week-36-working-with-list-views-in-ida/

Finding “hidden” cross-references

17Mar2023

& https://hex-rays.com/blog/igors-tip-of-the-week-132-finding-hidden-cross-references/

When analyzing firmware or other binaries without metadata, IDA is not always able to discover and analyze all functions
which means the cross-references can be missing. Let’s say you found a string in the binary (e.g. in the) which
has no cross references, but you're reasonably sure it’s actually used. How to discover where?

Finding addresses using binary search

One possibility is that the string is referred to by its address value, either from a pointer somewhere, or as an immediate
value embedded directly in the instruction (the latter case is more common for CISC instruction sets such as x86). In
such case, looking for the address value should discover it.

For example, here’s a string in an ARM firmware which currently has no cross-references:

DCB 8x38 ; 8
DCB ex3e ; @
DCB 8x30 ; @
DCB -]
aErroSIsAWrongl DCB "erro: %s is a wrong image,filelen:%d, or file not existlllI",exA
DCB @
DCB 8x73 ; s
DCB 8x79 ;
1B38 DCB @x73 ; s
C3E31B89 DCB exe6 ; f
:C3E31B8A DCB 8x77 ;
DCB @ex2E ;
DCB exes ; i
DCB exeD ; m
DCB 8x67 ; g
DCB =]

e PR

We can try the following:

Select and copy to clipboard the string’s address (C3E31B49);

. Go to the start of the database (Ctrl- PgUp or Home, Home, Home);

. Invoke binary search (Search > Sequence of bytes..., or A1t-B);

. Paste the address and make sure that Hex is selected. It is also recommended to enable Match case to avoid false
positives:

A OWN A

‘ % Binary scarch X

| Fnter binary search string-

| String | C3C31049
| B Match case Hex
| =
("] search up () Decmal
| || Eind all occurrences () Qdal

coding UTF-8 (default 8-bit)

0K | Cancel Help

5. Click OK. IDA will automatically convert the value into a byte sequence corresponding to the processor endianness
and look for it in the database:

[E output

Searching down CASE-SENSITIVELY for binary pattern:
49 1B E3 C3
Search compIeted. Found at C3E@4FCO.

The value may be initially displayed as a raw number or even separate bytes. To convert it to an offset so that xref is
created you can usually use the 0 or Ctrl- 0 shortcuts, or the context menu:

ROM:CIEQSFCO duord_CIEQHTCO DCD BRCIE™<0
RO CaEaar e Feaams

dword_CIEBSFCA DCD GxC3E

dword_CIEB4FCE DD BxC3F Atefnter

off_C3Losrce oco NN
off_CIEBAFDE DD aMach

RpTepe—_

i

Now the string has a cross-reference and you can look further at where exactly it is used:

Finding addresses using immediate search

Binary search works for addresses embedded as-is into the binary. However, there may be situations where an address
is embedded into an instruction not on a byte boundary, or split between several instructions. For example, RISC-V usu-
ally has to use at least two instructions to load a 32-bit value into a register (high 20 bits and low 12 bits). In case these

Igor’s tip of the week - season 03

Finding “hidden” cross-references

17Mar2023

& https://hex-rays.com/blog/igors-tip-of-the-week-132-finding-hidden-cross-references/

instructions are next to each other, IDA can combine them into a single macroinstruction and calculate the full value, but
because it’s split between two instructions, binary search won'’t find it. However, imnmediate search (Search > Immediate
value..., or Alt- I) should work. Note that if you copy the address from the listing, you'll need to add Ox so that it can be
parsed as hexadecimal by IDA.

= addi sp, sp, 1@h
8 Search Immediate X > e
Searching down for value
Search completed. Found at ©00@2B62.
This command searches for the specified ROM: POB@2E62 loc_2B62: & CODE XREF: ROM:8@882B361]
ROM:ee@02B62 11 65 13 @5 1i aB,
i il 1l ROM:©0002B62 45 8B i C 0
value in the instruction operands ROM:0GOG2B68 EF DO OF DB jal sub grg 3RXOK: RS ERNG PR 0K 080

and data items.

Value to search B v

l:] Any untyped value
() search up

l_l Find all occurrences

OK l Cancel Help

NOTE: this approach will succeed only under the following conditions:

1. the instruction(s) using the address were actually decoded. You can try the approach described in to try
disassembling the whole binary before looking for cross-references;

2.the instructions were actually combined into a macro with the full address. For example, if they are interleaved with
unrelated instructions, IDA won'’t be able to combine them and you may need to look for each part separately.

Unfortunately, even the methods described here are not always enough. For example, will likely
require analyzing the code to figure out what they refer to.

See also:

1 https://hex-rays.com/blog/igors-tip-of-the-week-128-strings-list/

2 https://hex-rays.com/blog/igor-tip-of-the-week-04-more-selection/

3 https://hex-rays.com/blog/igors-tip-of-the-week-110-self-relative-offsets/
4 https://hex-rays.com/blog/igors-tip-of-the-week-95-offsets/

5 https://hex-rays.com/blog/igors-tip-of-the-week-114-split-offsets/

Igor’s tip of the week - season 03

Alignmentitems

24Mar2023

& https://hex-rays.com/blog/igors-tip-of-the-week-133-alignment-items/

Sometimes you may see mysterious align keywords in the disassembly, which can appear both in code and data areas:

3131518 SxTE13stdRbad_alloc dd &

bad_alloc',0

4
dd offset EBxtSlistdgexception ; Parent
dda, 3
; Parent

and of

; pid
LAPSED FUNCTION std: :bad_al!

%
lac: sbad_alloc(std: ibad_alloc &). PRESS

Usually they’re only apparent in the text view.

These directives are used by many assemblers to indicate alignment to a specific address boundary, usually a power of
two. IDA uses it to replace potentially irrelevant bytes by a short one-liner, both for more compact listing and to indicate
that this part of the binary is probably not interesting.

Depending on the processor and the assembler chosen, different keyword can be used (e.g. align or .align), and the
number after the directive can mean either the number of bytes or the power of two (i.e. 1 means aligning to two bytes, 2
to four, 4 to sixteen and so on).

The alignment items can appear in the following situations:

Code alignment padding

Many processors use instruction caches which speed up execution of often-executed code (for example, loops). This
is why it may be useful to ensure that start of a loop is aligned on a specific address boundary (usually 16 bytes). For
this, the compiler needs to insert instructions which do not affect the behavior of the function, i.e. NOP (no-operation)
instructions. Which specific instructions are used depends on the processor and compiler.

For example, here GCC used a so-called “long NOP” to align the loop on 16 bytes (obvious thanks to the hexadecimal
address ending with 0). Because this instruction is actually executed, IDA shows it as code and not as an align expres-
sion (which is considered non-executable and would break disassembly), but you can still convert it manually.

text:80080000060400650 __do_global_ctors_aux prac near ; CODE XREF
text:8000000000400650 55 push rbp

\taxt:0000000000400651 48 89 £5 mov rbp, rap
taxt:0000000000400654 53 push rbx

.text:0000000000400655 48 83 EC 03 sub rsp, 8
.text:0000000000400659 48 8B 85 00 1+ mov rax, csi_CTOR_LIST_
text:0000000000400650 20 00

.text:0000000000400660 48 83 FA FF cmp rax, OFFFFFFFFFFFFFFFFh
\£axt:0000000000400664 74 12 j1 short loc_d0967F
.TeXT:0000000000400566 00 60 07 GO 00 mov abx, offset _CTOR_LIST
text:@eao0aaeeseussa [BF TF 44 60 08 Fop__dword pEr [Fax+rax+don]|
text: 70

text :BBIBIGENBIBEE 7D loc_seesifel ; CUDE XREF
text:6ABAAAAAABAAAETA 45 A3 FR AR sub rox, B
Lext:0000000000408674 FF DO call rax ; _CTOR_LIST
text:0000000000400676 48 8B 03 mov rax, [rbx
text:0000000000400670 48 53 F8 FF cmp rex, GFFFFFFFFFFFFFFFFh
.text:0000000000400670 75 F1 jnz short loc_d00670
.text:000000000046067F

|TeXt:0O0800000BABO6TF loc_a0067F : i CODE XREF
ToXT:BABAAAAARALBAETE 48 33 C4 B add rp, 8
text:B80BBAA0AB4BREE3 58 pop rbx

text:8OPEAAAGABIBREEY C9 Leave

text:3080000006400585 €3 retn

text:8000000000409685 _do_global_ctors_aux endp

There may also be hardware requirements. On some processors the interrupt handlers must be aligned, like in this ex-
ample from PowerPC:

ROM:@8820A5@ # ========s====== SUBROUTINE-=
ROM:00000A50

ROM: @0000A50 # Attributes: thunk
ROM: @B080A50

ROM: @8a88A5a8 IVOR1_handler:
+ROM:@2000A52 78 @0 @1 20 eb
ROM:@0080A50 # End of function IVOR1_|
ROM: @8808A58

ROM:@8820A5@ #

ROM:60600A54 18 00 DB 06+

ROM : 80B0BAGE

ROM: 88888A60 # =============== SUBROUTINE-=
ROM : 8B8GEAG0

ROM: @0000AG0 # Attributes: thun

ROM: @0000AER

ROM:GGGGBA@ IVOR2_handler:

-ROM:00000A608 78 @@ @1 E8 E_b sub_(ﬂe
ROM:00000AGE # End of function IVOR2_handlar
ROM : B0BBBAGE

ROM] #

ROM: 2 18 @@ D@ Pe+
ROM:00000A70

Here, 4 is a power-of-two value, i.e. alignment to 16-byte boundary.

Igor’s tip of the week - season 03

Alignmentitems

24Mar2023
& https://hex-rays.com/blog/igors-tip-of-the-week-133-alignment-items/

Function padding

Similarly to loops, whole functions can benefit from the alignment, so they’re commonly (but not always!) aligned to at
least four bytes. Because the functions are usually placed one after the other but the function size is not always a mul-
tiple of the alignment, extra padding has to be inserted by the compiler and/or the linker. Two common approaches are
used:

. executable NOP instructions, just like for the loop alignment. This is the approach commonly used by GCC and
derived compilers:

lncrat_409580 5 CODE XREF: frome_dummy+
3 frame_dummys16t 3

—_

leave

frane_dummy endp I

2.invalid or trapping instructions. This can be useful to catch bugs where execution is diverted to an address between
functions, for example due to a bug or an exploit. Microsoft Visual C++, for example, tends to use OxCC (breakpoint
instruction) to pad the space between functions on x86:

5 B0OL __ctdcall DLY

ot (HIHETANCE hinciOLL, CWORD fiwRuaton, LPVOID phesarved)
reryPoint

Dl1EntryPain

Data alignment padding

Many processors have alignment requirements: some can’t even load data from unaligned addresses, and others can
usually fetch aligned data faster. So the compilers often try to ensure that data items are placed on an aligned address
boundary (usually at least 4 bytes). Most commonly, zero-fill padding is used:

S0000TIRETIALENG "
9BO0TFFE7AAISED. Valusans:

Although NOP-like fillers may be used by some compilers too, especially for constant data placed in executable areas:

5 BOL 2805-2807 and Dalphi 7 Visual Component Library

o7 43 5 74
a 5 long - minmax

C btedoless @1

Converting alignment items

While rare, it may be necessary for you to change IDA’s decision concerning an alignment item. Because they’'re mostly
equivalent to data items, you can use the usual shortcut U to undefine them (convert to plain bytes), and then C to convert
to code (in case they correspond to valid instructions).

To go the other way (convert instructions or undefined bytes) to an alignment item, use Edit > Other > Create alignment

directive..., or just the shortcut L. IDA will check at what address is the next defined instruction or data item and will offer
possibly several alignment options depending on its address. For example, in this situation:

Igor’s tip of the week - season 03

24Mar2023
& https://hex-rays.com/blog/igors-tip-of-the-week-133-alignment-items/

The current address is divisible by 4 so any alignment less than 4 is not applicable. The following defined address (
7FF674A1A20) is divisible by 32, so IDA offers options 8, 16 and 32. Note that if you choose 8, the alignment item will only
cover the first 4 bytes (up to 7FF674A1A18), so in this situation 16 or 32 makes the most sense.

ARMBL jumps

31Mar2023
& https://hex-rays.com/blog/igors-tip-of-the-week-134-arm-bl-umps/

If you ever looked at IDA ARM module’s , you may have been puzzled by the option “Disable
BL jumps detection”.

| 98 ARM specific options X
|

| Simplify instructions

[J Disable pointer dereferencing

O No automatic ARM-THUMB switch
| | ® Disable BL jumps detection |

Scattered MOVT/MOVW pairs analysis
O Leave as is

© Valid addresses only

O Convert agressively

Edit ARM architecture options

| Current architecture:

| Base architecture: metaarm
ARM instructions: Yes
Thumb instructions: Thumb-2
| Thumb2-EE extension: Yes
VFP instructions: VFPv8
| Advanced SIMD instructions (NEON): NEONvS
XScale architecture: Yes
Intel Wireless MMX Technology: WMMXv2

OK 1 Cancel Help

What is it and when to use it?

Background
The ARM instruction set initially used fixed-width 32-bit instructions. The relative branch instruction, B, allocated 24 bits
for the offset, giving it a range of +32MB.

Some time later, ARM introduced a a compact 16-bit encoding for a subset of instructions, called Thumb. Because most
relative branches occur in the same function, the +2KB range available for 16-bit B instructions was usually enough. In
case longer distance was needed, a longer instruction sequence would have to be generated.

Some compiler writers realized, that the BL instruction, normally used for function calls, can be used for simple branch-
es as well. On ARM, the function calls do not use the stack, so the only side effect of BL as opposed to simple branch
is that it sets the LR register to the address following the BL instruction. If the LR is saved at the start of the current
function, it does not matter that if LR is clobbered by the intermediate BL instructions, since it can be restored from the
saved area to return to the caller. The BL is encoded as pair of 16-bit instructions, which gives it a range of +4MB.

A later extension of the Thumb, called Thumb-2, introduced a 32-bit version of B, giving it a range of +16MB, so there is
less need of such tricks in code compiled for modern processors which support Thumb-2. However, old code still needs
to be analyzed sometimes, so it may be necessary to support such usage of BL.

Example
Here’s an example of a Thumb mode program which looks a little strange...

IDA has created a function because of the BL instruction which normally implies a function call. But we see that func is
not complete, so most likely sub_C is actually its continuation and BL is used only as a branch. Also, func saves LR on the
stack, so BL clobbering it does not matter.

Igor’s tip of the week - season 03

ARMBL jumps

31Mar2023
& https://hex-rays.com/blog/igors-tip-of-the-week-134-arm-bl-umps/

Marking single instructions

If the BL-as-branch approach is used only in few cases, you can handle them manually. For this, place the cursor on the
line with BL and use Edit > Other > Force BL jump menu item. IDA will take this into account and indicate that this BL
does not continue to the next instruction by adding a

BeBe2626 ADDS RS, #1

eepB2628 Bl lac ¢

BBOD262C |5 - -~ oo

Beee262C

You can then delete the wrongly created function and or recreate the original one which had been truncated.

Changing analysis behavior
If the binary has multiple functions which use this technique, it may be worth it to let the analyzer check each BL destina-
tion before creating functions. For this, turn off Disable BL jumps detection in the processor specific options and

. Note that you will likely have to delete the wrongly created functions, so it may be better to reload the
file, changing the options in the initial Load File dialog.

To set this by default, change ARM_DISABLE_BL_JUMPS value in ida.cfg.

In cases where the BL jumps detection fails (it marks a BL as a jump where it should be a call, or vice versa), you can
always override its decision using Force BL jump and Force BL call menu options. In case you discover a specific code
pattern and need to script it, you can also use force_bl_jump(ea) and force_bl_call(ea).

1 https://hex-rays.com/blog/igors-tip-of-the-week-98-analysis-options/

2 https://hex-rays.com/blog/igors-tip-of-the-week-126-non-returning-functions/

3 https://hex-rays.com/blog/igors-tip-of-the-week-127-changing-function-bounds/
4 https://hex-rays.com/blog/igor-tip-of-the-week-09-reanalysis/

5 https://www.hex-rays.com/products/ida/support/idadoc/681.shtml

Igor’s tip of the week - season 03

Exporting disassembly fromIDA

07 Apr2023
& https://hex-rays.com/blog/igors-tip-of-the-week-135-exporting-disassembly-from-ida/

Although most of the time you can probably do all of the reversing inside IDA, occasionally you may need to continue it
using other tools. While sometimes it may be enough to analyze the input file with another tool, or use the

feature, the disassembly listing is more convenient in many cases. Of course, you can use the clipboard to copy some
snippets, but this can be awkward and slow if you need big chunks of the listing, or need to remove unnecessary parts of
the listing such as the address prefixes.

ASM file
ASM files can be generated by using the menu entry File > Produce File > Create ASM File..., or the shortcut Al1t-F1e.

Be ESL funp Sowch Yo Delugger bamvion Dpliors, Widows 1k

esto AP I

By default, the contents of the whole database is exported, but you can before invoking the command to

limit it to just what you need. If you need multiple fragments, you can repeat the action several time, choosing “Append”
when IDA informs you that the file already exists.

P Please confirm X

o Output it | -l <sts.

Append Qverwrite Cancel

In ideal circumstances, the ASM listing can be passed to the assembler to generate code equivalent to the original
binary. It means it does not contain extra annotations which may be present in IDA, such as address prefixes or
. Of course, the reality is often not so simple, but minor modification to the ASM file may be enough to solve your

problem.
LST file
The LST file can be generated via the menu entry File > Produce File > Create LST File... (no default shortcut). Unlike the
ASM file, it contains all the information present in IDA’s text view, so it can be useful if you want to see or

address prefixes.

_-8a1pa0nC

Zioateenec
o

jorg 40000Ch
assume esiGAP, S5:GAP, ds:HEADER, fsinothing, gsinothing

— B R ————

Protip
The ASM or LST file usually needs at least one line of text per each instruction or data item. If your database contains
large data areas, converting them to before exporting can reduce the size of the output files significantly.

uninteresting areas or whole segments is another option.

1 https://hex-rays.com/blog/igors-tip-of-the-week-39-export-data/

2 https://hex-rays.com/blog/igor-tip-of-the-week-03-selection-in-ida/

3 https://hex-rays.com/blog/igors-tip-of-the-week-123-opcode-bytes/

4 https://hex-rays.com/blog/igor-tip-of-the-week-10-working-with-arrays/

5 https://hex-rays.com/blog/igors-tip-of-the-week-31-hiding-and-collapsing/

Igor’s tip of the week - season 03

Changing assembler syntax

14 Apr2023

& https://hex-rays.com/blog/igors-tip-of-the-week-136-changing-assembler-syntax/

When , sometimes you need to modify it so that it is accepted by a specific assembler you're
using. One little-known fact is that some of IDA’s processor modules support different assembler syntaxes, so it may be
useful to try a different one to see if it matches your needs better.

The assembler can be changed via Options > General..., Analysis tab:

| ¥ IDA Options b3

Disassembly ~ Analysls Crossreferences Stings Browser Groph Lumina 4

| Target processor MetaPC (disassemble all opcodes) v
arget assembler |Generic for Intel 80x86 v
Generic for Intel B0x86
Borland TASM in Tdeal mode

Analysis
18 Enabled
8 Indicator enabled

Kernel options
Processor spedfic analysis options
—

| Reanalyze program

0K Cancel Help

For example, on x86 the TASM Ideal syntax may be selected instead of the default Generic one (based on MASM). One
feature of this syntax is that it always uses brackets for instructions which dereference memory pointers.

For ARM, you can choose a legacy assembler, which was used before introduction of UAL (unified assembly language)

with Thumb-2. For example, it used explicit STMFD and LDMFD instructions instead of the more convenient PUSH and POP
introduced for Thumb.

T QUIDA Cptions.
STiFD 51, {8}
s X e
LN (T R e R T S R

oo ke,
LOHEQFD SP1, {R12}
B

sub_188803FC

PUSH LR,
MoV R, #ox6d ; 'd Amdlysis Crossrelerences Shring
BL nEhL_E[BaseUi H

B SUB_168800A8

For some of the older processors the selection of assemblers can be quite extensive; they often didn’t have a freely
available official assembler so many third-party alternatives were available.

OF IDA Options b3

Disassembly ~ Analysls Crossreferences Stings Browser Groph Lumina 4

Target processor Zilog 80

Target assembler |Zilog Macro Assembler
Zilog Maco Assembler
Table Driven Assembler (TASM) by Speech Technology Inc.
%-M-80 by Leo Sandy
PseudoSam by PseudaCode
Cross-16 by Universal Cross- Assemblers
AB0 by ANTA electronics
Analysis Avocet Macro Preprocessor vi.0 by Avocet Systems, Inc.
AScoo by Alan R. Baldwin v1.5
8 Enabled f

B indicator enabled

Processor spedfic analysis options
—

Reanalyze proqram

0K Cancel Help

1 https://hex-rays.com/blog/igors-tip-of-the-week-135-exporting-disassembly-from-ida/

Igor’s tip of the week - season 03

Processor modes and segment registers

21Apr2023

& https://hex-rays.com/blog/igors-tip-of-the-week-137-processor-modes-and-segment-registers/

Some of the processors supported by IDA support different ISA variants, in particular:

¢ ARM processor module supports the classic 32-bit ARM instructions (A32), 16-bit Thumb or mixed 16/32-bit
Thumb32 (T32) , as well as 64-bit A64 instructions (A64)

e PPC processor module supports the standard 32-bit PowerPC instructions and mixed 16/32-bit Variable Length
Environment (VLE)

¢ MIPS module supports the classic 32-bit instructions as well as the compressed variants MIPS16 and microMIPS

Because sometimes these instructions sets may be present in the same binary, IDA needs a way to determine which
subset to use. For this, it repurposes segment registers, originally used on 16-bit x86 processors to extend the 16-bit
addressing. For example, if you load an ARM firmware binary, you will see the following informational box:

8 Information X
o ARM AND THUMB MODLC SWITCH INSTRUCTIONS

This processor has two instruction encodings: ARM and THUME.

IDA allows to specify the encoding mode for every single instruction.
For this IDA uses a virtual register T. I ils value is zero, then

the ARM mode is used, otherwise the THUMB mode is used.

You can change the value of the register | using

the ‘change segment register value' command

(the canonical hotkey is Alt-G)

:] Don't display this message again

S

In many cases, IDA is able to determine the correct processor mode by analyzing the code and determining mode switch
sequences (e.g. BX/BLX instructions), but you can also force its decision by using the described shortcut A1t- G (if you
prefer menus, you can find it in Edit > Segments > Change segment register value...).

Segments 4 Create segment...

Structs b Edit segment.. Alt+S

Functions L Delete segment.

Patch program b Move current segment...

Other » Rebase program...

Plugins 4 Change segment translation...

calcrel » | Change segment register value.. Alt+G |
;’;;: Set default segment register value...

In the dialog, select the T register and specify @ for ARM mode or 1 for Thumb (includes Thumb32 aka Thumb-2).

ﬂ Segment Register Value X
|
O '
O bs
Value Ox1 v |
Cancel Help i

—___ —_ —_—

You can observe mode switches in the disassembly listing by the CODE32/CODE16 directives (usually text view only):

CODE16

sub_4E8 . CODE XREF: sub_28F28+48lp
i sub_sgese+ielp ...

ALIGN 4

CODE32

sub_4FC ; CODF XRFF: suh_4F&Tj

Igor’s tip of the week - season 03

Processor modes and segment registers

21Apr2023

& https://hex-rays.com/blog/igors-tip-of-the-week-137-processor-modes-and-segment-registers/

If you need a global overview, use the View> Open subviews > Segment registers.... (Shift- F8) view or its modal version
Jump > Jump to segment (Ctrl-G):

Segment Registers n
o7 O s
| Segment register change points
|| start End Length Value lag
& 00009838 00009854 0000001C 01 a
@ 00009854 0000985E 0000000A 01 a
[0000985E 00009868 0000000A 01 a
T 00009868 00009870 00000008 01 a I
0009870 00009880 00000010 01 a
= 00009880 0000988C 0000000C 01 a
7 0000988C 000098E2 00000056 01 u
¥ 000098E2 00009952 00000070 01 a
1 00009952 00009964 00000012 01 a
1 00009964 0000996E 0000000A 01 a
= 0000996E 00009994 00000026 01 a
00009996 00000002 01 a
= 00009996 000099A2 0000000C 01 a
! | oooogoAz 000099A4 00000002 01 a
& 000099A4 000099A6 00000002 01 a
000099A8 00000002 01 a
000099E2 0000003A 01 a
| | 000099E2 000099E6 00000004 01 a
@ 000099E6 00009A0C 00000026 01 a
[00009A0C 00009A26 0000001A 01 a

Line 1646 of 8325
The Tag column gives a hint on how the specific changepoint was created: a denotes a changepoint added by IDA during
autoanalysis while u is used for those specified by the user (or, sometimes a plugin).

If necessary, wrong changepoints can be deleted from the list (even many at a time, using the selection). When a change
point is deleted, IDA uses the value of a preceding one (or the default for the current segment).

For MIPS, the mips16 pseudoregister is used to switch between standard MIPS and MIPS16 or microMIPS, and for PPC,
vle is used to enable decoding of VLE instructions.

See also:

1 https://www.hex-rays.com/products/ida/support/idadoc/524.shtml
2 https://www.hex-rays.com/products/ida/support/idadoc/547.shtml

Igor’s tip of the week - season 03

Pointer mathinthe decompiler

28 Apr2023

& https://hex-rays.com/blog/igors-tip-of-the-week-138-pointer-math-in-the-decompiler/

While working with decompiled code and retyping variables (or sometimes when they get typed by the decompiler auto-
matically), you might be puzzled by the discrepancies between pseudocode and disassembly.

Consider the following example:

+80B0BE01800BCCAS oV x19, X3 inted vid; /f
:00000001808BCCAC MoV x20, X2 int vis; //
:008000012008CCBO ApD X8, X22, #0x30 inte4 Protocel; //
:000000013008CCE4 ADD X3, X22, #0x28

:0000BE018080CCO8 e W, #0

:600O0B01308BCCEC CSEL X8, X8, X9, EQ

:90PORRR1E08BCCCA ADD X9, X22, %ax28

- BB KBRL (4 ano X18, X227, @1

+ARRABRA1 RAARCCCR o Wi, #a

: 00000001 808BCCCC CSEL ¥a, X9, ¥1e, £Q

:000000018008CC00 e W2,

:000000013008CC04 CSEL X8, X8, X9, EQ

:0000BE018080CCD8 LOR xa, [x8]

:600O0B01308BCCOC sz X@, luc_156OBCCEC

:00BOOA01B0ABCCED MoV x1, X21

:0PDOOROLE0BBCCES 5L __ZLlssearch_method_ListPk

MR KRR ER BNz X, lac_1seancnsa

:BBOBB018BOBCCEC

:000080018808CCEC loc_1B808BCCEC QOE—REF: protc

+00600601800BCCEC oR

:00000001300BCCFR ez X8, loc_lBoosco7o

:0000BE010080CCT4 LOR %9, [xa]

We see that X22 is accessed with offset 0x10 (16) in the disassembly but 2 in the pseudocode. Is there a bug in the de-

compiler?

In fact, there is no bug. The difference is explained by the C/C++pointer/array referencing rules: the array indexing or
integer addition operation advances the pointer value by the value of index multiplied by the element size. In this case,
the type of v4 is _QWORD*, which means that elements are _QWORDs (64-bit or 8-byte integers). Thus, 2*8=16(0x10), which

matches the assembly code.

To confirm what'’s really going on, you can do “Reset pointer type” on the variable so that it reverts to the generic integer

variable and the decompiler is forced to use raw byte offsets:

:B000ROE1500BCCAD MoV x19, X3 intes vid; £/

* MR SR AL Moy xm, X7 int vis; /7

:0BBRRRR1368BLLEE MDD X8, X22, #8x3e@ I int otoco I
:00000001500BCCE4 ADD X9, X22, #0x28 1

: BBBBBe1868BL B8 P W3, ¥ 14 = (__int64)al;
:B00OROD1500BCCEC CSEL X8, X8, X9, EQ 15 = oLL;

:00000001800BCCCO ADD X0, X22, #2310 16 it { v4 B& 32)

:0BBRRRR1368BLLC MDD X18, X22, #8x18 1

:000000010000CCCD P W, # = (QHORD *)(v4 + 4B);
:890BHBB186BBCCCC CSEL X9, X9, X18, EQ [+)]

BB SBBRL LD o w2, @ = (ua + am);
:00000001800BCCD4 CSEL X8, X8, X9, EQ Do)l + 32);
:00B00AE1366BLLDE Lon X8, [XS

:00000001000DCCDC oz %@, loc_1080DCCLC - ORD *)(vé + 243
:99PRPBR150BCCED MoV X1, x21 1f ((a3)

+ BOLBLLY] SUBBLLES BL __fL18search_method_listPk 3 = i

:00000001800BCCER CBNZ X@, loc_1868BCD74 26 if (1% | (- cearch _method list(*v9,
:800000010680CCLC {

:80000001560BCCEC lue_1880BCCEC EF: prutc =
* MR OIBL CEC LR x5, if (A&

+B00BBBA13BBBLLFB c8z X2, loc_ISBBBLDIG 1 intea|vay //
:00000001500BCCF4 LOR xa, [x8] 1 - oLL;

See also:

1 https://hex-rays.com/blog/igors-tip-of-the-week-117-reset-pointer-type/
2 https://hex-rays.com/blog/igors-tip-of-the-week-42-renaming-and-retyping-in-the-decompiler/
3 https://hex-rays.com/blog/igors-tip-of-the-week-118-structure-creation-in-the-decompiler/

Igor’s tip of the week - season 03

N -—-e)

License borrowing

05May 2023
& https://hex-rays.com/blog/igors-tip-of-the-week-139-license-borrowing/

Floating licenses allow additional flexibility for companies with many IDA users: IDA can be installed on as many comput-
ers as required, but only a limited number of copies can run simultaneously.

This flexibility its downsides: IDA needs to have permanent connection to your organization’s license server which may
make things problematic in some situations (e.g. working on an isolated network or in the field/while traveling). While
the first issue can be handled by placing the license server inside that network, accessing the company network during
travel may be problematic or impossible. In such situations, you can use license borrowing.

Borrowing allows the user to check out the license for a fixed period and work without connection to the server during
that time.

Borrowing licenses
To borrow a license, in a floating-license IDA go to Help > Floating licenses > Borrow licenses...

Help
B Hep F1 v Ee A

APl Documentation C

About program...

Floating Licenses r |¥Y Setup..

Return licenses...

IDA support forum

Check for free update...

Report a bug or an issue... nt type: Pure code

You will get a dialog like the following:

¥ Borrow floating licenses b4

NOTE: license borrowing Is only necessary If yau need to work offline.
There Is no need to explicitly borrow licenses while your workstation Is connected to the network

Borrow Until 2023-05-12

Licenses to borrow:

B IDAPROFW (IDA Pro)
_J HEXX86FW (%86 Decompiler)
| HEXXG4FW (x64 Decompiler)

Borrow Cancel

Here you can pick which licenses you want to borrow and the borrow period end date. By default, IDA offers one week
but you can make it shorter or longer (by default we limit the maximum borrow period to 6 months but it can be limited
further by the license server administrator).

If you click “Borrow”, you should see this confirmation:

€F¥ Information X
o Successfully borrowed licenses
Ij Don't display this message again

and the details in the Output window:

Successfully borrowed licenses:
IDAPROFW (IDA Pro) [currently borrowed until 2023-05-12 23:59]

After this, you can disconnect from the network and IDA will continue working until the specified date.

NB: once borrowed, the license(s) remain checked out (“In Use”) on the license server and will not become available for
others until the end of the borrow period or early return.

Igor’s tip of the week - season 03

05May 2023

& hitps://hex-rays.com/blog/igors-tip-of-the-week-139-license-borrowing/

Returning licenses

If you need to return borrowed licenses early (before the end of the borrow period):

1. Reconnect to the network with the server from which you borrowed the license

2.Go to Help > Floating licenses > Return licenses

~

-
' Return borrowed floating licenses. X

This command returns the selected license(s) to the common pool.
After returning, IDA will exit since it won't have a license anymore.
If you want to continue work, start IDA again to check out a new license.

Curently borrowed licenses:

@ 1DAPROFW (IDA Pro) [currently borrowed until 2023-05-12 23:59]
Return and Exit Cancel
A

3.select the license(s) to return and click “Return and Exit”.

4.1DA will exit since it has returned the license, but you can start it again to use the license server in online mode or

borrow again for another period.

Borrowing and returning licenses from command line

If you prefer using command line, check the corresponding section on our support page',

See also: Floating Licenses?

1https://hex-rays.com/products/ida/support/flexim/#borrow
2 https://hex-rays.com/products/ida/support/flexim/

Loading PDB types

12May 2023
& https://hex-rays.com/blog/igors-tip-of-the-week-140-loading-pdb-types/

While IDA comes with a rich set of for Windows API, they don’t cover the whole set of types used in
Windows. Our libraries are based on the official Windows SDK/DDK headers, which tend to only include public, stable
information which is common to multiple Windows versions. A new Windows build may introduce new types or use some
of the previously reserved fields. Because some of these structures are critical for proper debugging, Microsoft usually
publishes a subset of actual, up-to-date types in the PDBs for the core Windows modules (kernel32.d11 and ntd11.d11
for user mode, ntoskrnl.exe for kernel mode). Thus, usually you can use these files to get types matching the Windows
version you're analyzing.

Loading types from PDB
To load an additional PDB file, use File > Load file > PDB File...

Here, you can specify either an already downloaded PDB, or a path to .exe or .dll. In the latter case, IDA will try to fetch
the matching PDB from the symbol servers. Because we're loading the PDB which does not actually match the currently
loaded file, check “Types only” so that the global symbols from it are not applied unnecessarily.

| W Load PDB file X

Input file | C:\Windows\System32\ntdll.dll

8 Types only
|

Note: you can spedify either a .pdb, or an .exe/.dll file name.
Tn the latter case, DA will try to find and load
| the PDB spedified In its debug directory.
0K Cancel

After downloading and processing the PDB, the new types can be consulted in the Local Types view.

Struc. Ben.

SIRBGE
6BCCRONTEADCFRLIC
SADOAFIATIFALDEDCHFAS

G
ACTIATIN_CONTERT.ST.
eoLTEn_sAToNe

S0AADATSSOPORERECRESSC
TAGK TRACE DATABASE

See also:

1 https://hex-rays.com/blog/igors-tip-of-the-week-60-type-libraries/
2 https://hex-rays.com/blog/igors-tip-of-the-week-55-using-debug-symbols/

Igor’s tip of the week - season 03

Parsing Cfiles

19May 2023
& https://hex-rays.com/blog/igors-tip-of-the-week-141-parsing-c-files/

Previosuly, we've covered creating structures from C code , however this may be not very
convenient when you have complex types with many dependencies (especially of scattered over several fiels or depend-
ing on preprocessor defines). In such case it may be nore convenient to parse the original header file(s) on disk.

Parsing header files
If you happen to have the types you need in a header file, you can try using IDA’s built-in C parser via the File > Load file
> Parse C header file... (shortcut Ctrl+ F9).

File Edit Jump Seach View Debugger Llumine Options Windows Help

Hewinstance e F-Fm X p O

% Open.. I E—
Load file r Reload the input file
Produce file » P Additional binary file..
& suipt file.. Al+FT IDS/1DT file...
_'? Script command... ShifteF2 EDE file...
H sove Crl e W DEG filc...
Saye as... IS file...
T Take database snapshot. - Cuteshitsw [P ELIRT signature file.
Close

Just like a compiler, IDA will handle the preprocessor directives (#include, #define, #ifdef and so on), and add any types
discovered to the Local Types list, from where they can be used in the decompiler (or the disassembly, after importing
into the IDB).

Setting compiler options

IDA’s built-in parser can mimic several popular compilers, including Visual C++, GCC (and compatibles), Borland C++
Builder, or Watcom. For many stuctured files the compiler is preset to a detected or guessed value, but you can also
change or set it via Options > Compiler... dialog:

¥ Compiler opticns X In this dialog you can also adjust settings necessary for the preprocessing
Compiler e step, such as the predefined preprocessor macros (#defines) or the include
P =T o paths for the #include directives. They are pre-filled from the CC_PARMS set-
ting in ida.cfg.
Calling convention Stdcal ~
Memory model Near Code Mear Data ~
Pointer size B4 bit ~
1
Default alignment 0 ~
| sizeof{int) 4 ~ sizeof{short) 2 ~
| sizeof{bool) 1 ~ sizeof{long) £ ~
| sizeof{enum) 4 ~ sizeof{longlong) 8 ~
sizeof{long double) 8 I

Predefined macros 2_SUPPORT;DBNTWIN32;W325UT_32;

Indude directories es/Microsoft Visual StudioVCI8findude

Source parser <default> -~ Syntax: C
|
Parser spedific options
| PR
oK] Cancel

Clang parser

The built-in parser is quite basic and handles mostly simple C syntax or very basic C++ (e.g templates are not support-
ed). If you have complex files employing new, modern C or C++ features, you may have more luck using the Clang-based
parser added in IDA 7.7. It can be selected in the Source parser dropdown of the compiler options dialog and will be
used next time you invoke the Parse C header file command. For the details on using it, see the dedicated

See also:

1 https://hex-rays.com/blog/igor-tip-of-the-week-11-quickly-creating-structures/

2 https://hex-rays.com/tutorials/idaclang/

3 https://www.hex-rays.com/products/ida/support/idadoc/1367.shtml

4 https://www.hex-rays.com/products/ida/support/idadoc/1354.shtml

5 https://hex-rays.com/blog/igors-tip-of-the-week-62-creating-custom-type-libraries/

Igor’s tip of the week - season 03

-
Mappinglocal types
26May 2023
& https://hex-rays.com/blog/igors-tip-of-the-week-142-mapping-local-types/

When working on a binary, you often recover types used in it from many sources:

e creating structures manually, ,oru ;

e importing them from or ;

However, it may happen that eventually you discover duplicates. For example, you find out that the “custom” structure
you’ve been building up is actually a well-known type and you found the correct definition in debug info or header files.
Or, after analyzing two different functions, you only find out later that two structures are, in fact, one and the same. Of
course, you can go and replace all references to the “wrong” one manually, which is doable if you discover this early, but
if you already have hundreds of functions or other types referring to it, the process can become tedious.

Type mapping
To map a type to another, open the Local Types window (Shift-F1), and choose “Map to another type...” from the context
menu on the type you want to map.

=181 DECIMAL Inserth s
=182 tagDEC Delete Del
=183 tagDEC:)

= 184 tagDEC: Edit... Ctrl+E
@185 tagDEC: Copy Ctrl+C

[186 tagDEC:: oy an Ctrl+Shift+1ns
=187 tagVARD

=188 IRecordl Quick filler Cll+F
=189 [Record] Maodify filters... Ctrl1 Shift1 F
@190 LPCOLES i i

=191 COleObjr 4 Synchronize to idb

192 anonym Synchronize to idh, and jump

=193 CCommc Unsync from idb

=194 ATL::CCt w Export to header file

=196 CDaolnd

@197 Concurre Hide column

=198 ATL::CAt Columns...

(21199 CMapStr

=200 ATL::CA(RI BERNIICCE:

=201 boost::e Jump to xref globally... Ctrl+Alt+X
([202 ATL::Che

Font..

= 203 AtlEnt;

After choosing the type to replace it, the original type is deleted and all references to it are redirected to the new one.
This is indicated by the arrow sign pointing to the new type’s definition.

=193 CCommonDialog Error struct __ cppobj : CDialog {}

=194 ATL::CComTypelnfoHolder:... struct

=195 CStreamOnCString struct

=196 CDaolndexFieldInfo struct

=197 Concurrency::details::Globa... struct

198 ATL::CAtIWinModule 0000002C struct __cppobj : ATL::_ATL_WIN_MODULE {}
=199 CMapStringToString::CPair struct

=200 ATL::CAccessibleProxy struct

=201 boost::exception struct

=202 ATL::Checked struct

ATL::_ATL_INTMAP_ENTRY

All uses of the old type in the function prototypes, local variable types etc. are replaced by the new type automatically.
See also:

IDA Help:

1 https://hex-rays.com/blog/igor-tip-of-the-week-11-quickly-creating-structures/

2 https://hex-rays.com/blog/igors-tip-of-the-week-118-structure-creation-in-the-decompiler/
3 https://hex-rays.com/blog/igors-tip-of-the-week-141-parsing-c-files/

4 https://hex-rays.com/blog/igors-tip-of-the-week-60-type-libraries/

5 https://hex-rays.com/blog/igors-tip-of-the-week-140-loading-pdb-types/

6 https://www.hex-rays.com/products/ida/support/idadoc/1259.shtml

Igor’s tip of the week - season 03

Fixing wrong address references in the decompiler

02Jun2023

& https://hex-rays.com/blog/igors-tip-of-the-week-143-fixing-wrong-address-references-in-the-decompiler/

When decompiling code without high-level metadata (especially firmware), you may observe strange-looking address
expressions which do not seem to make sense.

LOBYTE(v24[@])

return sub_C963E(11, *((_BYTE *f&dword 4]+ 1) & @x1F, *((unsigned __ints *&dword_4|+ z1) >> 5, @, 58, v24, 26);

else

{
if (5 == 18)

{
= *((unsigned _ints *haoff_14 + a1);

What are these and how to fix/improve the pseudocode?

Because on the CPU level there is no difference between an , distinguishing addresses
and plain numbers is a difficult task which is not solvable in general case without actually executing the code. IDA uses
some heuristics to try and detect when a number looks like an address and convert such numbers to , but such
heuristics are not always reliable and may lead to false positives. This can be especially bad when the database has valid
addresses around 0, because then many small numbers look like addresses. The decompiler relies on IDA’s analysis and
uses the information provided by it to produce the pseudocode which is supposed to faithfully represent behavior of the
machine code. However, this can backfire in case the analysis made a mistake. Thankfully, IDA is interactive and allows
you to fix almost anything.

In situation like above, usually the simplest algorithm is as follows:
1. position cursor on the wrong address expression

2.press Tab to switch to disassembly. You should land on or close to the wrong offset expression. Note that it does
not always match what you see in the pseudocode.

CMP R3, #0x12
BNE.W loc_5EBFC

LDRB R2, |[R4,#(offf 18+2 - 6)]|
MOVS R3, #0

CcMP R2, #BxE

3.convert it to a plain number, e.g. by pressing Q (hex), H (decimal) or # (default).

R2, [R4,#(of™ =~ 7

R3, #0 & Repame N

gi" *[*g;E#exS: % Jump to operand Enter

RB: [SP: #ax5i % lumpin a new window Alt+Fnter

R3, [SP,#@X5! k& Jump in a new hex window

loc_S5EBEC
RS, =byte_ 2@l Jump to xref to operand... X
R1, R4, #oxl! List aross relerences [tom... Cul+)
RO, R5, #BxB
sub 518C B[R4, #off 14]
RG,_#B 2 Structure offset T
loc_ 5EBEC a
R3. [R4,#(of [[TREFOxIA] 9]
R3, #1 fiel | [R4,#20] H
loc_5EBC2 e

-] | [R4,#024]
R3, [R5] i 1
R3, R3, #7 P2 [R4.#0b10100] B
CMP R3, #ex12
BNE . W loc_SEBFC
LDRB R2, [R4,#8x14]
MOVS R3, #0@
CMP R2, #OxE

4.press Tab to switch back to pseudocode and F5 to refresh it. The wrong expression should be converted to plain
number or another context-dependent expression.

LOBYTE(v24[@]) =

return sub_C963E(11, [a1[4]] & ex1F, >> 5, @, 50, V24, 26);

1 https://hex-rays.com/blog/igors-tip-of-the-week-46-disassembly-operand-representation/
2 https://hex-rays.com/blog/igors-tip-of-the-week-95-offsets/

Igor’s tip of the week - season 03

Macros and simplified instructions

16Jun2023

& https://hex-rays.com/blog/igors-tip-of-the-week-144-macros-and-simplified-instructions/

Many processors (especially RISC based) use instruction sets with fixed size (most commonly 4 bytes). Among exam-
ples are ARM, PPC, MIPS and a few others. This is also obvious in the disassembly when observing the instructions’
addresses - they increase by a fixed amount:

©00000001801C8C4 loc_1801C8CC4 5 CODE XRE
60000001801C8C CcMP X1, #0
©0000001801C8C! LDR Xe, [xe]
00000001801C8C B.GT loc_1801C8B04
60000001801C8C| Mov W4, #OXFFFF
©0000001801C8Cl AND X0, X4, X3,LSR#48
00000001801C8C| AND X1, X4, X3,LSR#32
00000001801C8C| AND X2, X4, X3,LSR#16
©0000001801C8C| AND X3, X4, X3
00000001801C8C ADD We, we, Wi
00000001801C8C ADD W2, W2, W3
©0000001801C8C| ADD we, we, w2
00000001801C8C AND W1, W4, We,LSR#16
00000001801C8C AND We, W4, we
©0000001801C8C| ADD we, we, wi
00000001801C8C AND W1, W4, We,LSR#16
60000001801C8D! AND We, W4, we
©0000001801C8D! ADD we, we, wi
©0000001801C8D! AND We, we, W4
60000001801C8D! RET

However, occasionally you may come across larger instructions:

oeeeeee18eelse2e loc_l8ee19020 ; CODE XREF: sub_180019000+41j
eooeeeels0e19e20 ; sub_ls8eeloeee+1etj
feppeee180019010 JADRL X1, sel_retain ; “retain”
©0000001800190 B _objc_msgSend

©000000180019028 ; End of function sub_l8ee1%668

What is this? Does A64 ISA have 8-byte instructions?

In fact, if you check , you'll discover that ADRL is a pseudo-instruction which generates two
machine instructions, ADRP and ADD. IDA combines them to provide more compact disassembly and improve cross-ref-
erences.

In IDA’s terminology, a pseudo-instruction which replaces several simpler instructions is called a macro instruction.

Disabling macros
If you prefer to see the actual instructions, you can disable macros. This can be done in the Kernel Options 3 group of
settings:
AU WO, WO, WL
ANC
ANC “
::E Disassembly ~ Analysis Cross references Stings Browser Graph Lumina ¢ P
ANC

anr
O Kernel oplions X

Options 1 Options 2 Opfions 3

B Crable 011 analysis
ﬂ Enable RTTI analysis

Kernel options

Processor sperific analysis opfions

Reanalyze program

0K Cancel Help

And now IDA no longer uses ADRL.:

1186019820 loc_180019020 ; CODE XREF: sub_186819600+413
rigeelseze ; sub_180019%000+101]
11gee19e2e ADRP AL, #aoOnreceipt ; "onReceipt”
1180019824 ADD X1, X1, #sel_retain@PAGEOFF ; "retain"
1180019028 B _objc_msgsend

1180019028 ; End of function sub 18eelseee

Igor’s tip of the week - season 03

Macros and simplified instructions

16Jun2023

& https://hex-rays.com/blog/igors-tip-of-the-week-144-macros-and-simplified-instructions/

As can be seen in this example, it can produce misleading disassembly (ADRP can only use page-aligned addresses
which is why it seems to refer to some unrelated string)

Simplified instructions
In addition to macros, sometimes IDA may transform single instructions to improve readability or make their behavior
more obvious. For example, on ARM some instructions have preferred disassembly form and by default IDA uses it.

MOV (wide immediate)

Move (wide immediate) moves a 16-bit immediare value to a register.
This is an alias of MOVZ. This means:

* The encodings in this description are named to match the encodings of MOVZ,
* The description of MOVZ gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 8 8 7 & 5 4 3 2 1 0
[sf[1 01 0 0 1 0 1] hw | imm16 Rd |
opc

32-bit (sf==10)
MOV «<Wd>, #<imm>

is equivalent to

MOVZ <Wd>, #<immlé>,
andﬁrh\'hen! (IsZero (imml€) && hw != '00").
64-hit (sf==1)
MOV <Xd>, #<imm>

is equivalent to

MOVEZ <xd», #<immlé>, LSL

and is thi preferred disassemblypwhen | (TsZers (imml6) && hw 1= '007)

Instruction simplification feature is usually controlled by a processor-specific option.

LDXR X16, [X@] LDXR X16, [X@]
AND X17, X16, #@xFFFFFFFF8 AND X17, X16, #@xFFFFFFFF8
LDR X17, [X17,#exz2e] LDR X17, [X17,#exz2e]
TBZ W17, #2, sub_l186019060 TBZ W17, #2, sub_l186019000
TBZ Wls, #0, loc_18001902C TBZ W16, #0©, loc_18601902C
LSR X17, Xle, #ex2C ; ', UBFM X17, X16, #@x2C, #Ox3F
CBZ X17, loc_18001983C CBZ X17, loc_18001983C
MoV 17, #ex200000000000 MOVZ W17, #ex2eee,LSL#32
ADDS X17, Xle, X17 ADDS X17, X1e, X17
B.CS loc_18001%034 B.CS loc_18001%034
STXR Wie, X17, [Xe] STXR wie, X17, [Xe]
CBNZ W16, loc_18001904C CBNZ W16, loc_1801904C
RET RET
w ARM specific options X w ARM specific options X
)
1
B simplify instructions) [simplify instructions

Other disassembly improvements

Some processor modules may have other options which may change disassembly to improve readability even if it
sometimes means the resulting listing is not strictly conforming. For example, MIPS has an option to simplify instructions
which use the global register $gp which usually has a fixed value and using it makes disassembly much easier to read:

CODE XREF:

2int8843
1 $a2,[dword_sceese
1 $a3,| dword_10200000
1a 419, | getopt_lon
adédu $ve, 3ep, oxmo+var_

OB MIPS specitic options b4

3

18 Use mnemenlc register names
Strictly adhere to instruction formats

move $a9, $s2 & arge
s tve, axse+longind(fsp) # long [Simplify instructions
su $zero, OxBasvar_s($sp) | 18 Prudeatly semch for i

addiu %a2, (aArf - Bx4008008) #

addiu $a3, (off_10000014 - ©x100000f E8 Allow hilkkn ol muxhfivationn.
move Sal, Ssl # argy

move $vi, $ve

elti $a0, $v@, Ox67 ¥ ‘g $gp value DR10008030

CODE XREF: main:loc_4¢ G MIPS specific options

main+0843
1w $a3 Sgp
1w $t9, (getopt_long ptr -|ex1eeesesa)(Sep)) OB S

addiu $ve, $sp, @xse+var_§ Styictly adhere to instruction formals
move $a@, $e2 # arge

sw
sw
addiu
addiu
Jalr

$ve, @xse+longind($sp) # longind

$zero, BxsB+var_8($sp)

a2, (aArf - Bx400008) # "arf

$a3, (off_10000014 - 0x10000000) 4 long(
39 ; getopt_long

Igor’s tip of the week - season 03

B8 simplify instructions
B Erudently search for Tul'
B Allow hidden sat modifications

Simplity $gp expressions

16Jun2023

& https://hex-rays.com/blog/igors-tip-of-the-week-144-macros-and-simplified-instructions/

If you are curious about what the options in the dialog do, clicking “Help” shows a short explanation:

O Custom Help X

If checked, IDA will use mnemonic names of Lhe
registers,
like a0, al, L0, vO...

strictly adhers to instruction formats

If this option is on, IDA will check that unused
Lields

of instructions are tilled by zerces. It they are
noet,

it will refuse to disassemble the instructiem.
Simplify instructions

If this oplion is on, IDA will simplify
instructions and replace

them by clsarer pseudco-instructicns

For example,

or 5, 0, 4

will be replaced by

move x5, r1

See also:
Igor’s Tip of the Week #137: Processor modes and segment registers?
Igor’s tip of the week #98: Analysis options3

1https://developer.arm.com/documentation/dui0801/e/A64-General-Instructions/ADRL-pseudo-instruction?lang=en
2 https://hex-rays.com/blog/igors-tip-of-the-week-137-processor-modes-and-segment-registers/
3 https://hex-rays.com/blog/igors-tip-of-the-week-98-analysis-options/

HTML export

23Jun2023
& https://hex-rays.com/blog/igors-tip-of-the-week-145-html-export/

We’ve covered before but it was in context of interoperability, when simple text is
enough. If you want to preserve formatting and coloring of IDA View (e.g. for a web page or blog post), taking a screen-
shot is one option, but that has its downsides (e.g. no indexing for search engines). There is an alternative you can use
instead.

HTML export
To export a fragment of disassembly as HTML, the desired address range in the listing and invoke File > Produce
file > Create HTML file...

IDA will ask you for a filename and write the formatted text to it. The result will look like similar to the following:

<IDOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01 Transitional//EN” “http://www.w3.org/TR/html4/loose.dtd”>
<html>

<head>

<meta http-equiv="Content-Type” content="text/html; charset=IS0-8859-1">

<title>IDA - riscv_lscolors64.elf </title>

</head>

<body class="c41”>

.text:0000000000005528 addi s4</
span>, sp, 248h+var_1A0

.text:000000000000552C mv a0</
span>, s4

.text:000000000000552E mv al</
span>, s0

.text:0000000000005530 1i a2</
span>, 0A0h

.text:0000000000005534 call mem-
cpy

<style type="text/css”>

/* line-fg-default */

.cl { color: blue; }

/* line-bg-default */

.c41 { background-color: white; }

/* line-pfx-func */

.c44 { color: black; }

/* line-fg-insn */

.c5 { color: navy; }

/* line-fg-register-name */

.c33 { color: navy; }

/* line-fg-punctuation */

.c9 { color: navy; }

/* line-fg-numlit-in-insn */

.c12 { color: green; }

/* line-fg-locvar */

.c25 { color: green; }

/* line-fg-code-name */

.c37 { color: blue; }

</style></body></html>

As you can see, the color tags are represented by CSS classes which can be adjusted if necessary. When opened in
browser, the result should look pretty close to IDA View:

Igor’s tip of the week - season 03

23Jun2023

& https://hex-rays.com/blog/igors-tip-of-the-week-145-html-export/

We use this feature on our web site to display disassembly snippets for the processor gallery®.

Pseudocode to HTML

HTML can be generated not only for disassembly but also for the decompiled pseudocode; for this use “Generate
HTML...” from the context menu in the Pseudocode view.

See also:

IDA Help: Create HTML File#

Hex-Rays interactive operation: Generate HTML file5

Hack of the day #0: Somewhat-automating pseudocode HTML generation, with IDAPython.6

1https://hex-rays.com/blog/igors-tip-of-the-week-135-exporting-disassembly-from-ida/

2 https://hex-rays.com/blog/igor-tip-of-the-week-03-selection-in-ida/

3 https://hex-rays.com/products/ida/processor-gallery/

4 https://www.hex-rays.com/products/ida/support/idadoc/1504.shtml

5 https://www.hex-rays.com/products/decompiler/manual/cmd_html.shtml

6 https://hex-rays.com/blog/hack-of-the-day-0-somewhat-automating-pseudocode-html-generation-with-idapython/

Graph printing

30Jun2023
& https://hex-rays.com/blog/igors-tip-of-the-week-146-graph-printing/

While exporting text disassembly is enough in many cases, many users nowadays prefer IDA’'s , and saving its
representation may be necessary. What other options are there besides screenshots?

WinGraph
WinGraph is an external program shipped with IDA which can display graphs. It was used to show function (and other)
graphs before introduction of the built-in graph view in IDA 5.0 (2006). You can still use it via the View > Graphs menu.

For example, Flowchart action displays the graph of the current function.

Once the graph is displayed in WinGraph, you can print it using File > Print... or the first toolbar button. On most plat-
forms this supports printing to PDF in addition to real printers.

IDA graph view
If you prefer IDA’s graph layout, or have customized it to your liking (groups or custom layouts are ignored by WinGraph),
you can also print it directly from IDA. For this, use the print buttion on the Graph View toolbar, or the context menu by

right-clicking outside of any node.

Igor’s tip of the week - season 03

30Jun2023

& https://hex-rays.com/blog/igors-tip-of-the-week-146-graph-printing/

You will be asked about the page layout - this can be useful when printing large graphs

See also:

Igor’s tip of the week #23: Graph view?

Igor’s Tip of the Week #145: HTML export3

Igor’s Tip of the Week #135: Exporting disassembly from IDA%

1 https://hex-rays.com/blog/igors-tip-of-the-week-23-graph-view/

2 https://hex-rays.com/blog/igors-tip-of-the-week-23-graph-view/

3 https://hex-rays.com/blog/igors-tip-of-the-week-145-html-export/

4 https://hex-rays.com/blog/igors-tip-of-the-week-135-exporting-disassembly-from-ida/

Fixing “stack frame s too big”

07Jul2023
& https://hex-rays.com/blog/igors-tip-of-the-week-147-fixing-stack-frame-is-too-big/

The Hex-Rays decompiler has been designed to decompile compiler-generated code, so while it can usually handle
hand-written or unusual assembly, occasionally you may run into a failure, especially if the code has been modified to
hinder decompilation. Here is one of such errors:

If you have a genuine function with a huge stack frame, you'll probably have to give up and RE it the hard way - from the
disassembly. However, in some situations it is possible to fix the code and get the function decompiled.

Bogus stack variables

Stack variable with a large offset may be created by mistake (e.g. pressing K on an immediate operand), or induced
deliberately (e.g. junk code referring to large stack offsets which are not used in reality). The fastest way to check for
them is to look at the stack variable definitions at the start of the function and look for unusually large offsets:

To fix, double-click the variable or press Ctrl-K to open the , then undefine (U) the wrong stackvar(s).

Then you need to edit the (A1t- P) and reduce the local variables area to the actually used size (usu-
ally equival to the offset of the bottom-most actually used variable):

Igor’s tip of the week - season 03

07Jul2023

& https://hex-rays.com/blog/igors-tip-of-the-week-147-fixing-stack-frame-is-too-big/

If you still get the error message after all that, the bogus variables may have been re-added during autoanalysis, so it
may be necessary to patch out® or otherwise exclude from analysis the instructions which refer to them.

Unusual stack pointer manipulation

This trick may cause IDA to decide that the stack pointer changes by a huge value, or not detect stack changes, causing
it to grow the stack frame unnecessarily. This can be dealt with by adjusting the stack pointer delta* manually, or patch-
ing the instructions involved.

See also:
Igor’s tip of the week #27: Fixing the stack pointers
Decompiler Manual: Failures and troubleshooting)®

1https://hex-rays.com/blog/igors-tip-of-the-week-65-stack-frame-view/

2 https://hex-rays.com/blog/igors-tip-of-the-week-127-changing-function-bounds/
3 https://hex-rays.com/blog/igors-tip-of-the-week-37-patching/

4 https://hex-rays.com/blog/igors-tip-of-the-week-27-fixing-the-stack-pointer/

5 https://hex-rays.com/blog/igors-tip-of-the-week-27-fixing-the-stack-pointer/

6 https://www.hex-rays.com/products/decompiler/manual/failures.shtml

Fixing “call analysis failed”

14Jul2023
& https://hex-rays.com/blog/igors-tip-of-the-week-148-fixing-call-analysis-failed/

This error is not very common but may appear in some situations.

Such errors happen when there is a function call in the code, but the decompiler fails to convert it to a high-level function
call, e.g.:

1. the target function’s prototype is wrong;

2.the decompiler failed to figure out the function arguments: how many of them, or how exactly they’re being passed
to the calleg;

3.the usage of the stack by the call does not make sense.

Let’s look at some examples where it happens and how to fix it.
Wrong function info

The first action on seeing the error should be to inspect the address mentioned and the surrounding code. For example,
here’s the snippet around the address in the first screenshot:

.text:0804D5CD push [ebp+var_10]
.text:0804D5D0 push offset sub_804D6E8
.text:0804D5D5 push [ebp+var_28]
.text:0804D5D8 push offset sub_804CF24 ; oset
.text:0804D5DD call sub_8058FF0
.text:0804D5E2 mov edx, [ebp+var_14]
.text:0804D5E5 or dword ptr [edx+28h], 16h
.text:0804D5E9 mov eax, [ebp+var_18]
.text:0804D5EC add esp, 16h

.text:0804D5EF test eax, eax

.text:0804D5F1 jz loc_804D1D3
.text:0804D5F7 sub esp, OCh

.text:0804D5FA push [ebp+var_18]
.text:0804D5FD call sub_8055A0C

At the first glance, there doesn’t seem to be anything unusual: four arguments are pushed on the stack before calling the
function sub_8058FF0. However, if we go inside the function and try to decompile it, we get another error:

Also, the header of the function looks strange:

.text:08058FFQ ; =============== SUBROUT I N E =======================================
.text:08058FF0

.text:08058FF0 ; Attributes: bp-based frame

.text:08058FF0

.text:08058FF0 ; int _ cdecl sub_8058FF0@(sigset_t oset)

.text:08058FF0 sub_8058FF0 proc near ; CODE XREF: sub_804CF6C+6711p
.text:08058FF0 ; sub_804F798+126Tp ...
.text:08058FF0
.text:08058FF0 var_48
.text:08058FF0 oset

dword ptr -48h
sigset_t ptr -38h

l.e. the function was detected not to take four arguments, but one structure by value. While this can indeed happen in
some cases, the argument is in a wrong location: the local variables area (note the negative offset).

Igor’s tip of the week - season 03

Fixing “call analysis failed”

14Jul2023
& https://hex-rays.com/blog/igors-tip-of-the-week-148-fixing-call-analysis-failed/

Fixing the function itself is a topic for another post, but a quick fix for the original issue would be to delete the current
prototype and let the decompiler fall back to guessing the arguments. For this, put the cursor on the function name or its
first line, then press Y (), Del, Enter. This will clear the wrong prototype and decompilation should succeed,
showing the four arguments we’ve seen in the disassembly:

Sometimes the decompiler’s guessing of the prototype still fails, so try to specify one based on the actual arguments
being passed to the call (look at the assembly around the call). In some cases this may require the

Indirect calls
Instead of the direct function address, indirect calls use a register or a memory location which holds the destination
address to perform the call. For example, on x86 it may look like one of the following:

call eax

call dword ptr [edx+14h]
call [ebp+arg 0]

call g_myfuncptr

In rare cases, the decompiler may fail to detect the actual arguments being passed to the call, especially if optimizer
interleaves arguments passed to different calls. In that case, you can give it a hint by adding a cross-reference to the
actual function being called (if you know it), or a function of the matching type, for example using the

feature. You should also check that the stack pointer is before and after each call for stack-using
calling conventions.

See also:

1 https://hex-rays.com/blog/igors-tip-of-the-week-42-renaming-and-retyping-in-the-decompiler/
2 https://hex-rays.com/blog/igors-tip-of-the-week-51-custom-calling-conventions/

3 https://hex-rays.com/blog/igors-tip-of-the-week-115-set-callee-address/

4 https://hex-rays.com/blog/igors-tip-of-the-week-27-fixing-the-stack-pointer/

5 https://hex-rays.com/blog/igors-tip-of-the-week-27-fixing-the-stack-pointer/

8 https://www.hex-rays.com/products/decompiler/manual/failures.shtml

Igor’s tip of the week - season 03

Using symbolic constants in the decompiler

21Jul2023

& https://hex-rays.com/blog/igors-tip-of-the-week-149-using-symbolic-constants-in-the-decompiler/

We’ve covered the usage of symbolic constants (enums) . but they are also useful in the pseudocode
view.

Reusing constants from disassembly
If a number has been converted to a symbolic constant in the disassembly and it is present in unchanged form in
pseudocode, the decompiler will use it in the output. For example, consider this call:

.text:00405D72 push 1 ; nShowCmd
.text:00405D74 cmovnb eax, [esp+l14h+lpParameters]
.text:00405D79 push 0 ; lpDirectory
.text:00405D7B push eax ; lpParameters
.text:00405D7C push offset File ; “explorer.exe”
.text:00405D81 push 0 ; lpOperation
.text:00405D83 push 0 ; hwnd

.text:00405D85 call ShellExecutelW
Initially, it is decompiled like this:

ShellExecuteW(@, @, L”explorer.exe”, v136, 0, 1);

However, we that nShowCmd’s value 1 the constant SW_NORMAL, and apply it to the disas-
sembly:
[Z] Please choose a symbol o X push |5.~.'_r-1 ORMAL ; nShowCmd
Symbol name Value Type lrary cmovnb eax, |esptlld4h+lpParameters]
i.| SWPUnknownWardPronounceable 00000001 M5 5DK (Windows 7) .
P NOSIZE 00000001 push @ ; lpDirectery
T:Eultdmurilmuimm Eﬁﬂgﬁégi [JL.ISh cax i lpPa’amete rs
TEACT 00000001 push offset File ; "explorer.exe”
HSSDKAm push 8 ; lpOperatien
. push a ; hwnd
call ShellExecutel

oK | Cancel Search Help

After refreshing the pseudocode, the constant appears there as well:

ShellExecuteW(®, @, L”explorer.exe”, v136, 0, SW_NORMAL);

Applying constants in pseudocode
In fact, you can do the same directly in the pseudocode, using the context menu or the same shortcut (M):

@Y Add breakpoint F2 '
Synchronize with »
uj Copy Ctrl+C
Char R
I Enum M I

Invert sign Enum _

Bitwise negate ~-

Structure offset T

Set call type...

Remove function argument Shift+Del

Edit comment... !

Edit block comment... Ins

Note that there is no automatic propagation of the constants applied in pseudocode to disassembly. In fact, sometines
it’s not possible to map a number you see in the pseudocode to the same number in the disassembly.

Consider this example from a Windows driver’s initialization routine (DriverEntry):

Igor’s tip of the week - season 03

Using symbolic constants in the decompiler

21Jul2023

& https://hex-rays.com/blog/igors-tip-of-the-week-149-using-symbolic-constants-in-the-decompiler/

»DriverStartTo =
»DriverUnload =
»MajorFunction[@]
»MajorFunction[2]
»MajorFunction[14] =
>Majprfunction[18] =

STARTIO)sub_1Ce@al1348
D)sub_1C@ea1918;

J&sub_1CE8
J&sub_1CE8
H)&sub 108
H)&sub_1Ce

that indexes into the MajorFunction array correspond to the major IRP codes (IRP_MJ_xxx), SO we can convert
numerical indexes to the corresponding constants:

[£] Please choose enum

Symbol name Value

[£] 10_REPARSE TAG_COMMVALLT 0000000E
[E] 1pr_tever 0000000E
IPVE_DONTFRAG 0000000E
0000000E
0000000
| 0000000

D'ive‘Dbject—)ﬂajorFunctionI 14]| = (PDRIVE?FLDISPATCH}&SUEﬁlCGGOlE

and the pseudocode becomes:

DriverObject->DriverStartIo = (PDRIVER_STARTIO)sub_1C0001840;
DriverObject->DriverUnload = (PDRIVER_UNLOAD)sub_1C0001910;
DriverObject->MajorFunction[IRP_MJ_CREATE] = (PDRIVER_DISPATCH)&sub_1C0001510;
DriverObject->MajorFunction[IRP_MJ_CLOSE] = (PDRIVER_DISPATCH)&sub_1C00011B0;
DriverObject->MajorFunction[IRP_MJ_DEVICE_CONTROL] = (PDRIVER_DISPATCH)&sub_1C0001290;
DriverObject->MajorFunction[IRP_MJ_CLEANUP] = (PDRIVER_DISPATCH)&sub_1C0001070;

However, if we check the corresponding disassembly (e.g by using Tab or synchronizing pseudocode and IDA View), we
can see that the array indexes are not present as such in the instruction operands:

mov [rbx+60h], rax " -

lea rax, sub 100881510 sDriverStartlo = (PORT 5 10)sub 1C00B1840;

mov [rbxs70h], rax ->Urivernload = (1a0) sub_1L@e191e;

1 rax, sub_1CARAI1RA ->Majorfunction[TRP_M1_CRFATE] = RTVER_DTSPATCH)&sub_1CBAA151a;

mov [rbxt8eh], rax =)8sub_1coeo1108;

lea rax, sub 18881290 CH)&sub 1CB8@
H)&sub_10080146 /85

rax
TCARA1ATA

asetStart
return 9;

Another common situation where you can use symbolic constants in pseudocode but not disassembly is swich cases.

See also:

1 https://hex-rays.com/blog/igors-tip-of-the-week-99-enums/

2 https://learn.microsoft.com/en-us/windows/win32/api/shellapi/nf-shellapi-shellexecutew

3 https://learn.microsoft.com/en-us/windows/win32/api/winuser/nf-winuser-showwindow

4 https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/driverentry-s-required-responsibilities
5 https://hex-rays.com/blog/igors-tip-of-the-week-99-enums/

6 https://www.hex-rays.com/products/decompiler/manual/cmd_numform.shtml

Igor’s tip of the week - season 03

Extract function

28Jul2023

& https://hex-rays.com/blog/igors-tip-of-the-week-150-extract-function/

When you open a decompilable file in IDA, you get this somewhat mysterious item in the Help menu:

Help
H Hep Flo
AP| Documentation 3

About pregram...

IDA home page

IDA support forum
Send database...
Extract function...
Check for free update...

Report a bug or an issue...

And if you invoke it, it shows an even more mysterious dialog:

| W Extract function %

This command will delete ALl data in the database except the current function.
| Do you want to continue?
| @ Destroy unused program bytes
| @ ..but keep first-level cross-references
[Clean type info

O Delele stray netnodes

OK Cancel

So, what is it and when it is useful?

Originally this feature was added to the decompiler to make decompiler bug reporting easier: oftentimes. a decompiler
issue cannot really be reproduced or debugged without having the original database. However, in some cases sharing
the whole database is impractical or impossible:

e Whole database may be very large and difficult to share
¢ parts of the database may contain private or confidential information
¢ the rest of the database is not really relevant to the issue and only adds noise

This feature leaves just the current function plus maybe some potentially relevant information in the database. It can then
be sent to support for investigation and fixing, either by email or directly from IDA via Help > Report a bug or an issue...

W Report a bugfissue x
You can use this form to send a bug report or an enhancement request to Hex-Rays.

Please provide as many detalls as you can.

You can also attach the database you were working on, It will help us reprouce the problem.

The datatsase will be compressed and uploaded to our secure server.

One-line deseription It doesn't wark
Detals:

How o r
100t

eproduce the probles?

oo v
3.00 this again
4,108 crashes

Line:7 Column:1

Contact gmail me@expmple.com
8 Send database ® in batkground

NOTE: your license 1D and version information will be sent to the server.
The IDA database can include personally identifiable information

A secure (55L) connection will be used for transferring the file.

Wie treat all received databases as confidential.

Ok Cancel

See also:

1 https://hex-rays.com/blog/igors-tip-of-the-week-39-export-data/
2 https://hex-rays.com/blog/igors-tip-of-the-week-135-exporting-disassembly-from-ida/
3 https://www.hex-rays.com/products/decompiler/manual/failures.shtml#report

Igor’s tip of the week - season 03

Fixing “functionframeis wrong”

04 Aug2023

& https://hex-rays.com/blog/igors-tip-of-the-week-151-fixing-function-frame-is-wrong/

, we've run into a function which produces a cryptic error if you try to decompile it:

In such situations, you need to go back to disassembly to see what could be wrong. More specifically, check the
by double-clicking a stack variable or pressing Ctrl- K.

On the first glance it looks normal:

However, if you compare with another function which decompiles fine, you may notice some notable differences:

This frame has two members which are mentioned in the top comment:
Two special fields “ r” and “ s” represent return address and saved registers.

They’re absent in the “bad” function, so the whole layout is probably wrong and the function can’t be decompiled reliably.
On closer inspection, we can discover that the structure sigset_t (type of the variable oset in sub_8058FF0) is 0x80
bytes, so applying it to the frame overwrote the special members. You can also see that the variable crossed over from
the local variable area (negative offsets) to the argument area (positive offsets), which normally should not happen.

Fixing a bad stack frame

Although you can try to fix the frame layout by rearranging or editing the local variables, this won’t bring back the special
variables, so usually the best solution is to recreate the function (and thus its stack frame). This can be done by undefin-
ing (V) the first instruction, then creating the function (P). A quicker and less destructive way is to delete just the function
(ctrl- P, Del), then recreate it (P). Normally this should recreate the default frame then add local variables and stack
arguments based on the instructions accessing the stack:

Igor’s tip of the week - season 03

04 Aug2023

& hitps://hex-rays.com/blog/igors-tip-of-the-week-151-fixing-function-frame-is-wrong/

And now the function decompiles fine:

Some code is wrong because the function prototype still uses wrongly detected sigset_t argument. This is easy to fix —
just delete the prototype (Y, Del) to let the decompiler guess the arguments:

See also:

Igor’s Tip of the Week #148: Fixing “call analysis failed”s
Igor’s tip of the week #65: stack frame view#
Decompiler Manual: Failures and troubleshooting®

1https://hex-rays.com/blog/igors-tip-of-the-week-148-fixing-call-analysis-failed/
2 https://hex-rays.com/blog/igors-tip-of-the-week-65-stack-frame-view/

3 https://hex-rays.com/blog/igors-tip-of-the-week-148-fixing-call-analysis-failed/
4 https://hex-rays.com/blog/igors-tip-of-the-week-65-stack-frame-view/

5 https://www.hex-rays.com/products/decompiler/manual/failures.shtml

Force-creating functions

11Aug2023

& https://hex-rays.com/blog/igors-tip-of-the-week-152-force-creating-functions/

Occasionally, especially when working with embedded firmware or obfuscated code, you may see an error message
when trying to create a function (from context menu or using P hotkey):

There can be multiple reasons for it, for example:

1. some code has been incorrectly converted to data and the execution flows into it;

2.the function calls a which hasn’t been marked as such, so IDA thinks that the execution
flows into the following data or undefined bytes;

3.the function uses an unrecognized

4.the function calls some function which uses embedded data after the call, but IDA tries to decode it as instructions;

5.code has been obfuscated and IDA’s autoanalysis went down a wrong path.

You can double-click the address indicated to jump there and to see if you can identify the issue and try to fix it, but it
can take a long time to figure out.

Functions are required to use some of IDA’s basic functionality such as or the

Forcing IDA to create a function
Whatever the reason of the error, you can still create a function manually if you can determine its bounds using your best
judgement. For this, the is the most simple and convenient way:

1. while staying on the first instruction of the function, use Edit > Begin selection, or press Alt- L;
2.navigate down to the function’s end (e.g. look for a return instruction or start of the next function);
3.press P (Create function)

Note that the function created this way may have all kinds of issues, e.g. disconnected blocks in the graph view, JUMPOUT
statements in pseudocode or wrong decompilation, but at least it should allow you to advance in your analysis.

1 https://hex-rays.com/blog/igors-tip-of-the-week-126-non-returning-functions/
2 https://hex-rays.com/blog/igors-tip-of-the-week-53-manual-switch-idioms/

3 https://hex-rays.com/blog/igors-tip-of-the-week-23-graph-view/

4 https://hex-rays.com/blog/igors-tip-of-the-week-40-decompiler-basics/

5 https://hex-rays.com/blog/igor-tip-of-the-week-03-selection-in-ida/

Igor’s tip of the week - season 03

Copying pseudocode to disassembly

18 Aug2023

& https://hex-rays.com/blog/igors-tip-of-the-week-153-copying-pseudocode-to-disassembly/

When using the decompiler, you probably spend most of the time in the

. In case you need to consult

the corresponding disassembly, it’s a quick Tab away. However, if you actually prefer the disassembly, there is another

option you can try.

Copy to assembly

This action is available in the pseudocode view’s context menu when right-clicking outside of the decompiled code:

iﬂ- Add breakpoint F2
Synchronize with 4

Edit comment... /

“)a Edit block comment... Ins
abe’ Mark as decompiled
Hide casts \

Because the decompiler uses disassembly
ing ones:

W Please confirm X

Copying pseudocode to disassembly listing will destroy
existing anterior and pesterior comments,

Do you want to continue?

[Don't display this message again

Yes

for this feature, it warns you that the action will destroy any exist-

After confirmation, comments with pseudocode lines are added to the disassembly:

FFFFFFF@@7894844 STP X2@, X19, [SP,#@x7@+var_18]
FFFFFFF@@75894848 STP X29, X3@, [SP,#@x7@+var_s@]
FFFFFFF@@7589484C ADD X29, SP, #@x7@
FFFFFFF@@7894850 ; 39: w12 = *(_DWORD *)(a3 + 8);
FFFFFFFO@7894850 mov | x28, X7
FFFFFFFBB7894854 MoV 22, X2
FFFFFFF@B7894858 MoV X21, X1
FFFFFFF@B789485C MoV 19, X8
FFFFFFFBB7894868 LDR W24, [X2,#3]
FFFFFFFB@7894864 ; 48: if ((a5 & 1) != @)
FFFFFFFBB7894864 TBZ w4, #8, loc_FFFFFFF@@7394874
FFFFFFFB@7894868 ; 41: *{_DWORD *)(a8 + 8) |= @x280080u;
FFFFFFF@@7894868 LDR We, [x28,#3]
FFFFFFFBB789486C ORR W8, W8, #ox280088
FFFFFFF@@7894870 STR wa, [x28,#3]
FFFFFFF@@7894874 ; 42: if (a4 != 16)
FFFFFFF@@7894874
FFFFFFFB@7894874 loc_FFFFFFF@B7894874 ; CODE XREF: sub_FFFFFFF@B780482C+381]
FFFFFFF@@7894574 CHMP W3, #0x18
FFFFFFF@@7894878 B.EQ loc_FFFFFFF@@78948AC
FFFFFFF@B789487C ; 44: if (a4 1= 17)
FFFFFFF@B789487C CHP W3, #8x1l
FFFFFFFBB7894880 B.EQ loc_FFFFFFF@@7B948EC
FFFFFFF@@7894884 ; 46 if (a4 != 18)
FFFFFFFBB7894884 CHP W3, #oxl2
FFFFFFFB@7894833 B.NE loc_FFFFFFF@B7894CD3
FFFFFFFB@789483C ; 48 if ((*(_BYTE *)(a8 + 9) & ex18) != 0)
FFFFFFF@@789488C LDRE We, [x28,%9]
FFFFFFFBB7894890 TENZ us, #4, loc FFFFFFFB87334964
You can see these comments even in the
i =
5 44 if (a4 1= 17)
CMP W3, #8x11
B.EQ loc_FFFFFFF@@78948EC
; 48: if (a4 != 13)
i W3, #4xl2
B.NE loc FFFFFFF@@7894(D3|
4
=
; 47 panic("ipc_right_copyout: strange rights @¥s:¥d", "ipc_right.c”, 3128LL);
loc_FFFFFFF@@7894CD3
ANRI XR, aTpeRighte ; "ipr _right.¢"
MOV wo, #oxC38
sTP X8, X9, [SP,#0x78+var_78]
ADRL. X0, alpcRightCopyou ® ; “"ipc_right_copyout: strange righ
BL _panic

Igor’s tip of the week - season 03

18Aug2023
& https://hex-rays.com/blog/igors-tip-of-the-week-153-copying-pseudocode-to-disassembly/

In fact, you can make use of this feature even without switching to pseudocode. While in disassembly, use Edit > Com-
ments > Copy pseudocode to disassembly, or the shortcut /

Edit Jump Search View Debugger Lumina Options Windows Help

B copy CuleC D@ ddd F-F X e @
Begin selection AL
Selectgll
T snitoenter M Instruction [Data [Unexplored | E
UndoCopytoassembly CulZ | & x| [IDAViewA @ @
Redo Culy
Export data Shift+E |

wh Code [d

& Data [

oF structyar. Alt+Q

R Strings »

& Augy.. Numpad=*

X Undefine u

4l Rename N
Operand type 3
Segments 3 ‘Add pscudocode comments...
Structs. 4 Delete pseudocode comments...
Eunctions b 2] Entercomment...
Patch program » [Enter repeatable comment... :
Other » = Enteranterior lines.. Ins
Plugine ¥ 5 Enterposterior lines... Shift+Ins

Note that unlike pseudocode itself, these comments are static and do not change when you make changes in the
pseudocode (e.g. rename variables). To update the comments, you need to trigger the action again.

In case you changed your mind and want to clean up the function, use “Delete pseudocode comments” from the same
menu.

See also:
Hex-Rays interactive operation: Copy to assembly#
Igor’s tip of the week #14: Comments in IDAS

1https://hex-rays.com/blog/igors-tip-of-the-week-40-decompiler-basics/
2 https://hex-rays.com/blog/igor-tip-of-the-week-14-comments-in-ida/

3 https://hex-rays.com/blog/igors-tip-of-the-week-23-graph-view/

4 https://www.hex-rays.com/products/decompiler/manual/cmd_copy.shtml
5 https://hex-rays.com/blog/igor-tip-of-the-week-14-comments-in-ida/

Synchronized views

25Aug2023

& https://hex-rays.com/blog/igors-tip-of-the-week-154-synchronized-views/

When working with a binary in IDA, most of the time you probably use one of the main views: disassembly (IDA View)

or (Pseudocode). If you need to switch between the two, you can use the Tab key — usually it jumps to
the the same location in the other view. If you want to consult disassembly and pseudocode at the same time,
is one option, however it is of rather limited usefulness. You can two view side-by-

side and Tab between them, but this can be rather tedious.

Synchronizing views
To ensure that position in one view follows another automatically, select it in the “Synchronize with” context submenu.

E Group nodes

= Repame N

F Edit lunction... All+P AGEOFF]

Hide Ctrl+Numpad+-

= Text view | block_invoke
= Proximity browser Numpad+-

X Undefine u

Add breakpoint rz2

¥ Xrefs graph to...

Hy Xrefs graph from...

I Synchronize with 4 | Hex View-1

y v Pscudocode-A

| umina

Font_.

Now, if you place disassembly and pseudocode side-by-side, the cursor position will be synchronized automatically
when navigating in either window. The matching lines are also helpfully highlighted. Because a single pseudocode line
may be represented by several assembly instructions and vice versa, the match is not one-to-one.

[P . s A0 AP _uicsaune Y_BEL_SLCAUE_M\ve, usA_tisss) g

loc_196BA6198 g *)RBSCreateDeserializedStringFromXPCDictic
aDAR B,

ndler BEPAGEOFF] d “)objc_claimiutorslsassdreturnvalue_18(objc_

L cbic_migsendicurrentiandler id “)obic_claimiutoreleasedreturnvalue_18(

6L obje_claimiutoreleasedReturnvalue 18

o e s sbjc_msgsend(
aoRe X8, AclassRef_NSString_BEPAGE
Lor X8, [XB,#CLassRel_NSString BEPAGEOFF) A
IADRL X2, aMsobjectBsxpod @ ; "NsObject *_BSXPCDecodeObject{RBSXPCCode obic_nsgSend(Object(RESKPCCa
BL _objc_msgSend$stringdithUTF8St ring_ o
BL ebje_claimautorelessedreturnvalue_18 " o i InPunctlons FiLe: Linstamber : deserntlons®
e P ; handleFailurelnFunction: file: linaumber: description
lADRL X3, efstr Rbsxpecodarh -

RL X5, cfstr_WeAlreadyvarif ; . x ue
oV X6, %23 o)
MOV X2, X24 *
MoV W, #oxige
BL _objc_msgSendshandleFailurelnFunction_fils_lineNumber_description_
oL objc_release_x24 i .

~obje_ X248 128 = NSClassFromstring 18

BL Tobjc_release 23 19 o i (J‘“‘ romstring 1a(vze);
b Toc_136BASFL4 o :

Any view which displays information tied to addresses can be synchronized to another. As of IDA 8.3 these include:

1. Disassembly (IDA View)
2.Decompilation (Pseudocode)
3.

You can even sync more than two views at the same time, although this has to be done in a specific sequence. For exam-
ple:

1. Synchronize IDA View-A and Pseudocode-A
2.Synchronize Hex View with the other pair

M Ac g1 rcoan ..h_@.x...EaF'{-
1E 45 Data format ' @."..R.E..w...
F8 o3 Columns v |a---ReallllllR
26 61 5 IR-...5&aR-h.@.
1€ 61 e ..7ak- .af- . ak-
E0 @3 Edit... L
60 16 *
BE 60 Synchronize with 4 Pseudocode-A, IDA View-A |
99 7C IR-3....]... R
9F A1 EQNE -R.aR 5

Synchronizing to registers in debugger

During debugging, an additional feature is available: synchronizing a view to a register value. You may have noticed that
during debugging the default disassembly view changes name to IDA View-EIP (IDA View-RIP for x64 or IDA View-PC
for ARM). This is because cursor follows the current execution address stored in the corresponding processor register.

Igor’s tip of the week - season 03

25Aug2023

& https://hex-rays.com/blog/igors-tip-of-the-week-154-synchronized-views/

(3 DA View-FIP
Layout graph
& Print graph
2 Fit window W [tributes: library function noreturr
B Zoom 100% 1 |
) lic start

E Text view [t proc near
[Synchvonize with 8| B, Hox View1

Luing , ESP, Stackview

EAX

ECX
-text:084016C2 mo\ g
.text:@@4@18c7 shl

.text:004010CA moy ESI eax
.texti@e4e1ecF pus EDI
(Eext06401000 pus gy
.text:ee4e1eD2 cal

.text:0e481eD7 moy ¥ EIP

leA

; 1pModuleName

You can also synchronize the default Hex View to a register, or open additional views if you need to follow a specific one.
For this, use “Open register window” from the context menu on the register in the registers view.

T General registers

IDA View

EAX©@019FFCC » Stack[©©e09584]:!
EBX©6316000 » TIB[000089584]:00.

ECX 90401680 » start
EDX 6e401eB@ - star‘t

Stack[00809584]:0019FF88 db 406h ; @
® Stack[eeee9584]:@019FF81 db 7Dh ; }
N S‘tack[99999584] 9919FF82 db @EEh

El % Jump N S‘tack[99899584] 9919FF86 db 19h
TraTe fim & e o lee ® Stack[eeee9584]:0019FF87 db e
El P * Stack[©0009584]:0019FF88 db 9Bh
= Modify value... E
& Zero value 0
Toggle value Space
= Increment value +
5
= Decrement value -
P Copy
BE
& Font...
See also:

Igor’s tip of the week #22: IDA desktop layouts®
Igor’s tip of the week #38: Hex view®
Igor’s Tip of the Week #153: Copying pseudocode to disassembly?

1 https://hex-rays.com/blog/igors-tip-of-the-week-40-decompiler-basics/

2 https://hex-rays.com/blog/igors-tip-of-the-week-153-copying-pseudocode-to-disassembly/
3 https://hex-rays.com/blog/igors-tip-of-the-week-22-ida-desktop-layouts/

4 https://hex-rays.com/blog/igors-tip-of-the-week-38-hex-view/

5 https://hex-rays.com/blog/igors-tip-of-the-week-22-ida-desktop-layouts/

6 https://hex-rays.com/blog/igors-tip-of-the-week-38-hex-view/

7 https://hex-rays.com/blog/igors-tip-of-the-week-153-copying-pseudocode-to-disassembly/

Splitting stack variables in the decompiler

02Sep2023

& https://hex-rays.com/blog/igors-tip-of-the-week-155-splitting-stack-variables-in-the-decompiler/

We've covered before, but there may be situations where it can’'t be used.

For example, consider following situation:

int64 _ fastcall testfunc(int al, int a2)

if { (unsigned __ int8)IndexFromId(*(_DWORD *)(al + 4), » (int *)&va + 1))

LODWORD(v4) = *(DWORD *)(al + 4) + *(DWORD *)(*(DWORD *){al + 4) + 8 * HIDWORD{v4) + 25) + 13;
else

LODWORD(v4) = @;
return 3

¥

The decompiler decided that the function returns a 64-bit integer and allocated a 64-bit stack varible for it. For example,
the code may be manipulating a register pair commonly used for 64-bit variables (eax:edx) which triggers the heirustics
for recovering 64-bit calculations. However, here it seems to be a false positive: we can see separate accesses to the
low and high dword of the variable, and the third argument for the IndexFromld call also uses a pointer into the middle of
the variable.

One option is to hint to the decompiler that the function returns a 32-bit integer by editing the function’s prototype (use
“Set item type” or the Y shotrcut on the first line).

Often this fixes the decompilation, but not here:

int _ fastcall testfunc(int al, int a2)

if ((unsig + 4], , (char *)&vs + 4))
LODWORD(J(*(_DWORD *j(al + 4) + 8 * HIDWORD(vS) + 25) + 13;
else
LODWORD
return B
}
We still have a 64-bt variable on the stack at ebp-10h, so it’s worth inspecting the . It can be opened by

pressing Ctrl-K in disassembly view or double-cliking stack variable in disassembly or pseudocode:

E

DA View-A Bl stackoftestine

a8 Pscudocode-A
type (data/asciifarra;

a

ar_
-B20Beees db

a
5
B

We see that there is a quadword (64-bit) variable at offset -1e. it can be converted to 32-bit(dword) by pressing D three
times. Another dword can be added in the same manner at offset -C:

(=9
(=
L Y " ALY R VTR TV R IV RV

After refreshing pseudocode, we can see improved output:

Igor’s tip of the week - season 03

Splitting stack variables in the decompiler

02Sep2023

& https://hex-rays.com/blog/igors-tip-of-the-week-155-splitting-stack-variables-in-the-decompiler/

int _ fastecall testfunc(int al, int a2)

int ws[3]; //

__int&8)IndexFromId(*{_DWOR)
"D T)(EL+4) + D F)(F(_DWORD *)(a1 + 4) + 8 * w5[@] + 25) + 13;

else
return @;

} I

There’s only one small issue: v5 became an array. This happened bcause passing an array or an address of a single
integer produces the same code but there was a gap in the stack frame after var_c, so the decompiler decided that it’s
actually an array. If you're certain that it’s a single integer, you have the following options:

1. Edit the stack frame again and define some variables after var_C so that there is no space for an array.
2.retype v5 directly from the pseudocode (use Y and enter ‘int’).

Now the pseudocode looks correct and there is only one variable of correct size:

int _ fastcall testfunc(int al, int a2)

{

int w5; //

if ((unsi
return *(_D
else
return @;

» &U5))
+4) + 8 F us + 25) + 13;

Note that in some cases a variable passed by address may be really an array, or a structure — in case of doubt inspect
the called function to confirm how the argument is being used.

See also:

1 https://hex-rays.com/blog/igors-tip-of-the-week-69-split-expression/

2 https://hex-rays.com/blog/igors-tip-of-the-week-65-stack-frame-view/

3 https://hex-rays.com/blog/igors-tip-of-the-week-65-stack-frame-view/

4 https://hex-rays.com/blog/igors-tip-of-the-week-42-renaming-and-retyping-in-the-decompiler/

Igor’s tip of the week - season 03

Command-line options for firmware loading

08Sep2023

& https://hex-rays.com/blog/igors-tip-of-the-week-156-command-line-options-for-firmware-loading/

Firmware binaries often use raw binary file format without any metadata so they have to be loaded manually into IDA.
You can do it interactively using the , but if you have many files to disassembile it can quickly get boring.
If you already know some information about the files you're disassembling, you can speed up at least the first steps. For
example, if you have a binary for big endian ARM, which should be loaded at address OxFFFFO0O0O, you can use the
following command line:

ida -parmb -bFFFF@@@ firmware.bin

The-p switch tells IDA which processor module to pre-select. You can see the available names for different processor
types in the second column of the processor selector pane in the load dialog:

W Load a new flle x
Lood file bin a5

Dinary file:

Procassor type (double-click to set)

aut RISC Core

aut RISC Core ARCompact arcmpct l
aut RISC Core ARCtangent-A4 arc

aut RISC Core ARCv2 arcv2

| rocessars

ig-endian ARME

ittle-endian ARM

AVR series

AVR AVR

nak nep

o Analysis —

1 iy ment Kernel optlons:

250 B Cnabled
Loading offset B Ingicator enabled Processor options

Options

B Create sogments
t gaps t B Rename DLL enfrics
B Load as code segment eat t Manual load

oK Cancel Help

The -b switch specifies the load base to be used, however due to IDA’s origins as a DOS program, the value needs to be
specified in paragraphs (16-byte units), so we have to omit the last hexadecimal zero.

In case the file is recognized by IDA as some specific format, it will be used instead of the plain binary, but the processor
specified will be retained if possible. For example, the firmware for Cortex-M processors is usually recog-
nized as such out-of-box:

O Load n e e *®

Load file bin gs
ARNH8-M (Mainline) binary file [cartex_m.py]
Binary file

Processar type (double-click to sat)
Intel 860 big endion
Intel 560 litle san 9600
ntel 360 wan (default) 960
v = Lnun Virtual Markina

19600

Analysis

Loading segment. 0x Kernel options
B Enabled
Loading offset @ Indicator enabled Processor oplions

Options

1 Load resources
8 Rename DLL entries
O Manual load

OK Cancel Help

If you prefer to have the file loaded as plain binary or another non-default format, you can force it using the -T switch
with the unique prefix of the preferred format name:

ida -parm -b800400 -Tbinary firmware.bin

(-Tbin would also work)

See also:

1 https://hex-rays.com/blog/igors-tip-of-the-week-41-binary-file-loader/
2 https://hex-rays.com/products/ida/news/8_3/

3 https://www.hex-rays.com/products/ida/support/idadoc/618.shtml

4 https://www.hex-rays.com/products/ida/support/idadoc/417.shtml

5 https://hex-rays.com/blog/igors-tip-of-the-week-41-binary-file-loader/

Igor’s tip of the week - season 03

