
Diffing and Merging Databases with IDA Teams
Last updated on June 15, 2022 Ñ v1.0

1. Overview
IDA 7.8 introduces IDA Teams - a mechanism that provides revision control for your IDA database files. Perhaps the
most essential feature of this new product is the ability to natively diff and merge databases directly within IDA, allowing
multiple reverse engineers to manage work on the same IDA database.

This document discusses in detail the steps involved when diffing and merging IDA databases.

Before continuing, you might want to take a quick look at the tutorial for hvui[TODO link], the GUI client for IDA Teams'
revision control functionality. It will be referenced multiple times in this document, although here we will focus
specifically on the merging functionality.

2. Inspecting changes
After having done some reverse-engineering work on an IDA database, it is possible to view those changes in a special
mode in IDA: right-click, and choose the diff action:

Here a new instance of IDA will be launched in a special "diff" mode:

Copyright (c) 2022 Hex-Rays SA

Page 1 of 40

2.1. IDAÕs diff mode
This new IDA mode lets the user compare two databases, in a traditional "diff" fashion: essentially a two-panel window,
showing the unmodified file on the left and the version with your changes on the right.

2.1.1. The "Progress" widget

Represents the current step in the diff process.

Copyright (c) 2022 Hex-Rays SA

Page 2 of 40

2.1.2. The left panel

Shows the "untouched" version of the database (i.e., the one without your changes)

Copyright (c) 2022 Hex-Rays SA

Page 3 of 40

2.1.3. The right panel

Shows your version of the database (i.e., featuring your changes)

Copyright (c) 2022 Hex-Rays SA

Page 4 of 40

2.1.4. Diff region details

Notice how both panels have a little area at the bottom, that is labeled "Details".

Details are available on certain steps of the diffing process, and provide additional information about the change that is
currently displayed.

Copyright (c) 2022 Hex-Rays SA

Page 5 of 40

2.1.5. The "diffing" toolbar

The actions in the toolbar are:

¥ Previous chunk

¥ Center chunk

¥ Next chunk

¥ Proceed to the next step

¥ Toggle 'Details'

Using actions in the toolbar, you can now iterate through the differences between the two databases, with each change
shown in context as if viewed through a normal IDA window.

The ability to view changes in context was a major factor in the decision to use IDA itself as the diffing/merging tool for
IDA Teams.

Diff mode IDAÕs toolbar actions

Previous chunk

Move to the previous change

Center chunk

Re-center the panels to show the current chunk (useful if you navigated around to get more context)

Next chunk

Move to the next change

Proceed to the next step

Move to the next step in the diffing process.

Toggle 'Details'

Toggle the visibility of the "Details" widgets in the various panels (note that some steps do not provide details, so even if
the "Details" are requested, they might not be currently visible.)

Copyright (c) 2022 Hex-Rays SA

Page 6 of 40

2.2. Terminology
It is important to note the difference between the terms "diff" and "merge".

This document will sometimes use the two terms interchangeably. This is because to IDA, a diff is just a specialized
merge. Both diffing and merging are handled by IDAÕs "merge mode", which involves up to 3 databases, one of which can
be modified to contain the result of the merge.

A diff is simply a merge operation that involves only 2 databases, neither of which are modified.

This is why often times you will see the term "merge" used in the context of a diff. In this case "merge" is referring to
IDAÕs "merge mode", rather than the process of merging multiple databases together into a combined database.

2.3. Using IDA as a diffing tool
We must stress the fact that performing a merge between two IDA databases is quite different than performing a merge
between, say, two text files. A change in a chunk of text file will not have an impact over another chunk.

IDA databases are not so simple. A change in one place in an idb will often have an impact on another place. For
example, if a structure mystruct changed between two databases, it will have an impact not only on the name of the
structure, but on cross-references to structure members, function prototypes, etc.

This is why IDAÕs merge mode is split into a strict series of "steps":

Within a single step it is possible to go forward & backward between different chunks. But because of possible inter-
dependencies between steps, it is not possible to move backwards between steps, you can only go forward:

Since IDAÕs diff mode is just a variation of its merge mode, diffing databases is also subject to this sequential application
of steps in order to view certain bits of information. That is why, in some steps (e.g., the "Disassembly/Items") IDA might
not report some changes that were performed at another level.

For instance, if a user marked a function as noret , the listings that will be shown in "Disassembly/Items" step, will not
advertise that there was a change at that place (even though the "Attributes: noreturn" is visible in the left-hand
listing), only the changes to the instructions (and data, É) are visible in the current step:

Copyright (c) 2022 Hex-Rays SA

Page 7 of 40

The change will, however, be visible at a later step (i.e., "Functions/Registry"):

Copyright (c) 2022 Hex-Rays SA

Page 8 of 40

NOTE The changes applied during the "diff" process are only temporary. Exiting IDA (at any moment) will not
alter the files being compared.

Copyright (c) 2022 Hex-Rays SA

Page 9 of 40

2.4. Merging concurrent modifications (conflicts)
As with any collaborative tool, it may happen that two coworkers work on the same dataset (e.g., IDA database), and
make modifications to the same areas, resulting in "conflicts". Conflicts must be "resolved" prior to committing.

To do that, right-click and pick one of the "resolve" options:

IDA Teams provides the following merge strategies.

2.4.1. Interactive merging

If the option that was chosen (e.g., Interactive merge mode) requires user interaction due to conflicts, IDA will show in 3-
pane "merge" mode.

Copyright (c) 2022 Hex-Rays SA

Page 10 of 40

When a conflict is encountered, youÕll have the ability to pick, for all conflicts, which change should be kept (yours, or the
other). Every time you pick a change (and thus resolve a conflict), IDA will proceed with the merging, applying all the non-
conflicting changes it can, until the next conflict - if any. When all conflicts are resolved, you can leave IDA, and the new
resulting file is ready to be submitted.

3. Appendix A

3.1. Merge Steps
This section provides a detailed overview of the steps involved in the merge process. The list of predefined merge steps
is defined in merge.hpp of the IDASDK:

enum merge_kind_t
{
Ê MERGE_KIND_NETNODE, ///< netnode (no merging, to be used in idbunits)
Ê MERGE_KIND_AUTOQ, ///< auto queues
Ê MERGE_KIND_INF, ///< merge the inf variable (global settings)
Ê MERGE_KIND_ENCODINGS, ///< merge encodings
Ê MERGE_KIND_ENCODINGS2, ///< merge default encodings
Ê MERGE_KIND_SCRIPTS2, ///< merge scripts common info
Ê MERGE_KIND_SCRIPTS, ///< merge scripts
Ê MERGE_KIND_CUSTDATA, ///< merge custom data type and formats
Ê MERGE_KIND_STRUCTS, ///< merge structs (globally: add/delete structs entirely)
Ê MERGE_KIND_STRMEM, ///< merge struct members
Ê MERGE_KIND_ENUMS, ///< merge enums
Ê MERGE_KIND_TILS, ///< merge type libraries
Ê MERGE_KIND_TINFO, ///< merge tinfo
Ê MERGE_KIND_UDTMEM, ///< merge UDT members (local types)
Ê MERGE_KIND_SELECTORS, ///< merge selectors
Ê MERGE_KIND_STT, ///< merge flag storage types
Ê MERGE_KIND_SEGMENTS, ///< merge segments
Ê MERGE_KIND_SEGGRPS, ///< merge segment groups
Ê MERGE_KIND_SEGREGS, ///< merge segment registers

Copyright (c) 2022 Hex-Rays SA

Page 11 of 40

Ê MERGE_KIND_ORPHANS, ///< merge orphan bytes
Ê MERGE_KIND_BYTEVAL, ///< merge byte values
Ê MERGE_KIND_FIXUPS, ///< merge fixups
Ê MERGE_KIND_MAPPING, ///< merge manual memory mapping
Ê MERGE_KIND_EXPORTS, ///< merge exports
Ê MERGE_KIND_IMPORTS, ///< merge imports
Ê MERGE_KIND_PATCHES, ///< merge patched bytes
Ê MERGE_KIND_FLAGS, ///< merge flags_t
Ê MERGE_KIND_EXTRACMT, ///< merge extra next or prev lines
Ê MERGE_KIND_AFLAGS_EA, ///< merge aflags for mapped EA
Ê MERGE_KIND_IGNOREMICRO, ///< IM ("$ ignore micro") flags
Ê MERGE_KIND_HIDDENRANGES, ///< merge hidden ranges
Ê MERGE_KIND_SOURCEFILES, ///< merge source files ranges
Ê MERGE_KIND_FUNC, ///< merge func info
Ê MERGE_KIND_FRAMEMGR, ///< merge frames (globally: add/delete frames entirely)
Ê MERGE_KIND_FRAME, ///< merge function frame info (frame members)
Ê MERGE_KIND_STKPNTS, ///< merge SP change points
Ê MERGE_KIND_FLOWS, ///< merge flows
Ê MERGE_KIND_CREFS, ///< merge crefs
Ê MERGE_KIND_DREFS, ///< merge drefs
Ê MERGE_KIND_BPTS, ///< merge breakpoints
Ê MERGE_KIND_WATCHPOINTS, ///< merge watchpoints
Ê MERGE_KIND_BOOKMARKS, ///< merge bookmarks
Ê MERGE_KIND_TRYBLKS, ///< merge try blocks
Ê MERGE_KIND_DIRTREE, ///< merge std dirtrees
Ê MERGE_KIND_VFTABLES, ///< merge vftables
Ê MERGE_KIND_SIGNATURES, ///< signatures
Ê MERGE_KIND_PROBLEMS, ///< problems
Ê MERGE_KIND_UI, ///< UI
Ê MERGE_KIND_NOTEPAD, ///< notepad
Ê MERGE_KIND_LOADER, ///< loader data
Ê MERGE_KIND_DEBUGGER, ///< debugger data
Ê MERGE_KIND_LAST, ///< last predefined merge handler type.
Ê ///< please note that there can be more merge handler types,
Ê ///< registered by plugins and processor modules.
};

The list of merge steps is not final. If for example there is a conflict in structure members then the new merge phase to
resolve this conflict will be created. The same is hold for UDT, functions, frames and so on. In other words in general
case the exact number of merge steps is undefined and depends on the databases.

We provide examples for some of the critical merge steps in the following sections.

3.1.1. Global settings/Database attributes

Global idainfo database attributes:

Copyright (c) 2022 Hex-Rays SA

Page 12 of 40

3.1.2. Global settings/Processor specific

Global idpflags processor settings:

Copyright (c) 2022 Hex-Rays SA

Page 13 of 40

3.1.3. Encodings/Registry and Encodings/Settings

This is an example of what you might see when merging registered string encodings:

Copyright (c) 2022 Hex-Rays SA

Page 14 of 40

Copyright (c) 2022 Hex-Rays SA

Page 15 of 40

3.1.4. Scripts/Registry and Scripts/Settings

When merging scripts (or snippets) saved in the database, the script name/language is displayed, and the "Detail" pane
contains the script source with the highlighted differences:

3.1.5. Types/Enums

Merging assembly level enums, which are not the ghost copy of local type.

As an example of merging enums, consider the following:

local_idb
Ê ;--------------------------
Ê ; enum enum_1, mappedto_1
Ê A = 0
Ê B = 1

remote_idb
Ê ;--------------------------
Ê ; enum enum_1, mappedto_1
Ê A = 0
Ê ;--------------------------
Ê ; enum enum_2, mappedto_2
Ê B = 1

In both idbs, enum constant "B" is present. However in the remote idb, "B" has a different parent enum, "enum_2".

When merging IDA will display both enum_1 and enum_2 in the Remote pane, indicating that the difference between
Local and Remote corresponds to two separate enums, but is only considered a to be single difference location. The
"Detail" pane will display the full enum definitions, with the highlighted differences:

Copyright (c) 2022 Hex-Rays SA

Page 16 of 40

3.1.6. Types/Structs

When merging assembly level structures, the structs are matched by name, structure tid and size, as well as the
structure attributes. Note however that structure members are handled in a different step. If members of the same
structure differ, the conflict may be resolved later during the Types/Struct members/É merge phase.

In the UI, IDA will display a list of structure names, with the "Detail" pane showing the structure attributes:

Copyright (c) 2022 Hex-Rays SA

Page 17 of 40

3.1.7. Types/Local types

Merging local types is similar to structures, in that types are matched by their attributes, and the members are handled in
a different step. Local types are compared by type name, ordinal number, and base type. If the members differ then
conflicts may be resolved later during the Types/Local types members/É merge step.

IDA uses the standard "Local types" widget to display the merged types. The "Detail" pane display the type definition and
its attributes:

Copyright (c) 2022 Hex-Rays SA

Page 18 of 40

At the end of this merge step, new steps might be added if there are conflicting members:

Copyright (c) 2022 Hex-Rays SA

Page 19 of 40

3.1.8. Addressing/Segmentation

When merging the segments layout IDA separates segments in databases to non intersecting ranges.

For example, the following segmentations:

local_idb
Ê seg000:00000000
Ê ...
Ê seg000:00000020
Ê ...

remote_idb
Ê seg000:00000000
Ê ...
Ê seg001:00000010
Ê ...
Ê seg001:00000020

will result in a single difference:

The "Detail" pane displays segments in range with the attributes.

While merging IDA tries to move segment boundaries when possible to preserve segment data. Otherwise the conflicted
segments will be deleted and new ones will be created.

There also may be orphan bytes that not belong to any segment:

Copyright (c) 2022 Hex-Rays SA

Page 20 of 40

Also byte values in a given segment may differ (for example if debug segment was saved in database) the merge step
displays the differences using the standard "IDA-View" widget. The "Detail" pane will display the conflicted byte values:

Copyright (c) 2022 Hex-Rays SA

Page 21 of 40

3.1.9. Disassembly/Items

When merging, IDA compares each disassembly item in the analysis. IDA compares disassembly items by length, flags,
opinfo, name, comment, and netnode information (NALT_* and NSUP_* flags).

This merge step uses the standard widget "IDA-View" so that items can be viewed in-context. For example:

3.1.10. Functions/Registry

Function definitions are merged using the standard "Functions" widget, with a "Detail" pane that displays function
attributes:

Copyright (c) 2022 Hex-Rays SA

Page 22 of 40

