IDA Pro - Appcall user guide
Copyright 2023 Hex-Rays SA

Contents
INEEOAUCTION ...ttt sttt et b et sat e bt et e e st e bt et e saee bt et 2
QUICK STATT....eieiiiieie ettt ettt e et e e e ettt e e e e tteeeeeetbaeeeeeeasseeeeebaeeeeeessaseeeessaeeeeannseeens 2
Using AppCall With IDCccuviiiiieeeeeeeee et et e s e e s b e e e ssbee e nseeenseeenens 3
Passing arguments by refeIeNCe.ccuiviiiiriiiiieie et 5
_usercall calling CONVENTIONcocuiiiiiiiiiiiieiie et ettt 6
Variadic fUNCHIOMNScoiueiiiiiiie ettt ettt et ettt sbe e et e sseeebeesaee e 6
Calling functions that might CausSe EXCEePLIONS.cccuieruieriieriieeieeiierte et eee e sere e eeereereenenes 7
Functions that accept Or retUIN SIIUCLUIESc.eeeivieeiiiieiiie et eee e eeseree e veeeeereeeeneas 7
Calling an API that receives a structure and itS S1Z€.........cueevueeriieriieriieiienie et 9
Working With OPAGUE LYPES ..eeeuviieeiieiieeiieieeeie ettt ettt e e beesieeebeessaeenbaessaessseessseensaens 10
FindFirst/FindNext APIS €XamMPIEc..eeecuiiiiiiiieiiieeeiieeciee ettt e e e e sareeenaae e 11
Using LoadLibrary/GetProCAAAIesscceovverieriiiiiierieeieneieeeeteie et 12
Retrieving application's command lNe..........ccceeviiiiieiiiiiiieiieeieeeece e 13
Specifying APPCall OPHIONS....c..eiiiiiiiiiiieie ettt 13
ManUal APPCALL......coouiiiiiiii e et 14
Initiating multiple manual APPCallS.........cccvieeiiiiiriiiiiriie e e 15
Capturing exception debUZ EVENTScc.eeiiiiiiiiiieiieeit ettt 16
Appcall related fUNCIONSoueriiriiiiiiiieee et 16
parse_decl/get tinfO/SIZEOToiiviiiieie e e 16
Accessing enum membETrs @S CONSLANLSeeveruierierrierieneeiertenteete ettt et siee st eitesbeeneesaee e 17
Storing/Retrieving typed elements...........ccoviriiiiriiiiiiieieeeereeeeee s 18
Using Appcall with IDAPYhON.........coociiiiieie e e e 19
Passing arguments by TeferenCe.c.oouiriiiiriiriiiiieec e 21
Functions that accept Or retUrn StIUCLUIESccueeiuieriieiieeiie ettt ettt eee e 22
FindFirst/FINANEXt @XaMPIEcoooiiiiiiiiiiiiecie ettt tee et e e e e e enaee e 23
USING GEtPTOCAAAIESSeeueiieitieeiiietieeie ettt ettt ettt et eabeesaaeebeesenes 25
Setting the APPCall OPLIONSc..eieeiiiiiiiiieie ettt et e e e ebe e nee e 25
Calling functions that can cause EXCEPLIONScccuvreerureeriiieeeiieeeiieeeieeesreeesreeesaeeennreeeneseeennns 26
Appcall related functions in Python............cccoociioiiiiiiiiiie e 26
Storing/ReEtrieVINg ODJECLSocouuieriieiiiiiieeie ettt ettt e e eseesaee e 26

Accessing enum membETs @S CONSTANESveeeevieeririeeriieeriieerieeeeieeesreeessreeesereeesereeensseeennne 28

Introduction

Appcall is a mechanism to call functions under a debugger session in the context of the debugged
program using IDA's CLI (Command Line Interpreter) or from a script.

Such a mechanism can be used for seamless blackbox function calling and use, fuzzing, process
instrumentation, DLL injection, testing or extending applications.

Appcall mechanism highly depends on the type information of the called function. For that
reason, it is necessary to have a correct function prototype before doing an Appcall, otherwise
different or incorrect results may be returned.

In a nutshell, Appcall works by first hijacking the current thread's stack (please do switch threads
explicitly if you want to Appcall in a different context), then pushing the arguments, and then
temporarily adjusting the instruction pointer to the beginning of the called function. After the
function returns (or an exception occurs), the original stack, instruction pointer, and other
registers are restored, and the result is returned to the caller.

Please note that while most of the examples in this document are illustrated using a Windows
user mode application, Appcall is not limited to Windows and can be used with any platform
supported by IDA debuggers.

Quick start

Let's start explaining the basic concepts of Appcall using the IDC CLI. Let's imagine we have the
following printf () in the disassembly somewhere:

.text:00000001400015C0 ; int64 printf (const char *, ...)
.text:00000001400015C0 printf proc near
.text:00000001400015C0

.text:00000001400015C0

.text:00000001400015C0 arg O = gword ptr 8
.text:00000001400015C0 arg 8 = gword ptr 10h
.text:00000001400015C0 arg 10 = gword ptr 18h
.text:00000001400015C0 arg 18 = gword ptr 20h
.text:00000001400015C0

.text:00000001400015C0 mov [rsptarg 0], rcx
.text:00000001400015C5 mov [rsptarg 8], rdx
.text:00000001400015CA mov [rsptarg 10], 8
.text:00000001400015CF mov [rsptarg 18], r9

It can be called by simply typing the following in the IDC CLI (press "." to jump to the CLI):

_printf ("hello world\n");

As you noticed, we invoked an Appcall by simply treating printf as if it was a built-in IDC
function. If the application had a console window, then you should see the message printed in it.

If you have a function with a mangled name or with characters that cannot be used as an
identifier name in the IDC language, such as " my func@38", then you can use the LocByName
function to get its address given its name, then using the address variable (which is callable) we
issue the Appcall:

auto myfunc = LocByName (" my func@8");
myfunc ("hello", "world");

Or simply directly as:
LocByName (" my func@8") ("hello", "world");

Using AppCall with IDC

Apart from calling Appcall naturally as shown in the previous section, it is possible to call it
explicitly using the dbg appcall function:

// Call application function

// ea - address to call

// type - type of the function to call. can be specified as:
// - declaration string. example: "int func (void) ;"
// - typeinfo object. example: get tinfo (ea)

// - zero: the type will be retrieved from the idb
// ... - arguments of the function to call

// Returns: the result of the function call

// If the call fails because of an access violation or other exception,
// a runtime error will be generated (it can be caught with try/catch)
// In fact there is rarely any need to call this function explicitly.
// IDC tries to resolve any unknown function name using the application
labels

// and in the case of success, will call the function. For example:

// _printf("hello\n")

// will call the application function printf provided that there is

// no IDC function with the same name.

anyvalue dbg appcall (ea, type, ...);

The Appcall IDC function requires you to pass a function address, function type information
(various forms are accepted) and the parameters (if any):

auto msgbox;

msgbox = LocByName (" imp MessageBoxA");

// Pass "0" for the type to deduce it from the database
dbg_appcall (msgbox, 0, 0, "Hello world", "Info", 0);

We've seen so far how to call a function if it already has type information, now suppose we have
a function that does not:

Before calling this function with dbg appcall we have two options:

1. Pass the prototype as a string
2. Or, parse the prototype separately and pass the returned type info object.

This is how we can do it using the first option:

As for the second option, we can use parse decl () first, then proceed as usual:

Note that we used parse decl () function to construct a typeinfo object that we can pass to
dbg appcall.

It is possible to permanently set the prototype of a function programmatically using
apply_type():

In the following sections, we are going to cover different scenarios such as calling by reference,
working with buffers and complex structures, etc.

Passing arguments by reference

To pass function arguments by reference, it suffices to use the & symbol as in the C language.

o For example to call this function:

We can use this code from IDC:

e To call a C function that takes a string buffer and modifies it:

We need to create a buffer and pass it by reference to the function:

__usercall calling convention

It is possible to Appcall functions with non standard calling conventions, such as routines written
in assembler that expect parameters in various registers and so on. One way is to use the
__usercall calling convention.

Consider this function:

And from IDC:

Variadic functions

In C:

}

And in IDC:

auto result = va altsum(5, 4, 2, 1, 6, 9, 0);

Calling functions that might cause exceptions

Exceptions may occur during an Appcall. To capture them, use the try/catch mechanism:

auto e;

try

{
dbg appcall (some func addr, func type, args...);
// Or equally:
// some func name (argl, arg2, ...);

}

catch (e)

{

// Exception occured

}
The exception object "e" will be populated with the following fields:

e description: description text generated by the debugger module while it was executing the
Appcall

o file: The name of the file where the exception happened.

e func: The IDC function name where the exception happened.

e line: The line number in the script

e gerrno: The internal code of last error occurred

For example, one could get something like this:

description: "Appcall: The instruction at 0x401012 referenced memory at 0xO0.
The memory could not be written"

file: ™"

func: " idcexecQ"

line: 4. 4h 40

gerrno: 92. 5Ch 1340

In some cases, the exception object will contain more information.

Functions that accept or return structures

Appcall mechanism also works with functions that accept or return structure types. Consider this
C code:

#pragma pack (push, 1)
struct UserRecord
{

int id;

We can create a couple of records and link them up to

Because we issued an Appcall, when 1istRrRecords is called, we expect to see the following
output in the console:

Records:

; Name: userl
; Name: user?2

Id: 3 ; Name: user3
We can then access the fields naturally (even the linked objects). We can verify that if we just
dump the first record through the IDC CLI (or just by calling IDC's print function):

IDC>recl
object
id: 1. 1h 1o
name: "userl\x00"
next: object
id: 2. 2h 20
name: "user2\x00"
next: object
id: 3. 3h 30
name: "user3\x00"
next: 0x0ioc4

Notice how when rec1 is dumped, its next field is automatically followed and properly
displayed. The same happens for rec2 and rec3.

We can also directly access the fields of the structure from IDC and have those changes reflected
in the debugee's memory:

recl.id = 11;

recl.name = "hey userl";
recl.next.name = "hey user2";
recl.next.id = 21;
recl.next.next.name = "hey user3";

recl.next.next.id = 31;
// Display them
listRecords (recl) ;

Notable observations:

e Objects are always passed by reference (no need to use the &)

e Objects are created on the stack

e Objects are untyped

e Missing object fields are automatically created by IDA and filled with zero

Calling an API that receives a structure and its size

Let us take another example where we call the GetVersionExA API function:
kernel32.d11:00007FFF3A0F9240 kernel32 GetVersionExXA proc near
kernel32.d11:00007FFF3A0F9240 jmp cs:off 7FFF3A1645E0
kernel32.d11:00007FFF3A0F9240 kernel32 GetVersionExA endp

This API requires one of its input fields to be initialized to the size of the structure. Therefore,
we need to initialize the structure correctly before passing it to the API to be further populated
therein:

// Create an empty object

auto ver = object();

// We need to initialize the size of the structure

ver.dwOSVersionInfoSize = sizeof ("OSVERSIONINFO") ;

// This is the only field we need to have initialized, the other fields will
be created by IDA and filled with zeroes

// Now issue the Appcall:

GetVersionExA (ver) ;

msg ("%d.%d (%d)\n", ver.dwMajorVersion, ver.dwMinorVersion,
ver.dwBuildNumber) ;

Now if we dump the ver object contents we observe something like this:

IDC>print (ver);

object
dwBuildNumber: 9200. 23F0h 217600
dwMajorVersion: 6. 6h 60
dwMinorVersion: 2. 2h 20
dwOSVersionInfoSize: 148. 94h 2240
dwPlatformId: 2 2h 20

szCSDVersion: "\x00\x00\x00\x00\x00\x00...."

Working with opaque types

Opaque types like FILE, HWND, HANDLE, HINSTANCE, HKEY, etc. are not meant to be used as
structures by themselves but like pointers.

Let us take for example the FILE structure that is used with fopen () ; its underlying structure
looks like this (implementation details might change):

00000000 FILE struc ; (sizeof=0x18, standard type)
00000000 curp dd ?
00000004 buffer dd ?
00000008 level dd ?
0000000C bsize dd ?
00000010 istemp dw ?
00000012 flags dw *?
00000014 hold dw ?
00000016 fd db ?
00000017 token db ?
00000018 FILE ends

And the fopen () function prototype is:

msvert.dl1:00007FFF39F1B7B0 ; FILE * cdecl fopen(const char *FileName, const
char *Mode)

msvcrt.dl1:00007FFF39F1B7B0 fopen proc near
msvcrt.dl1:00007FFF39F1B7B0 mov r8d, 40h ; '@'
msvcrt.dll1:00007FFF39F1B7B6 jmp msvcrt fsopen

msvcrt.dl1:00007FFF39F1B7B6 fopen endp

Let us see how we can get a "FILE *"" and use it as an opaque type and issue an fclose () call
properly:

auto fp;

fp = fopen ("c:\\temp\\x.cpp", "r");
print (fp) ;

fclose (fp. at);

Nothing special about the fopen/fclose Appcalls except that we see the __at__ attribute showing
up although it does not belong to the FILE structure definition.

This is a special attribute that IDA inserts into all objects, and it contains the memory address
from which IDA retrieved the object attribute values. We can use the __at__ to retrieve the C
pointer of a given IDC object.

Previously, we omitted the __at__ field from displaying when we dumped objects output, but in
reality this is what one expects to see as part of the objects attributes used in Appcalls. Let's
create a user record again:

auto rec;

recl = makeRecord ("userl", 13);
rec?2 = makeRecord ("user2", 14);
recl.next = rec2;

print (recl) ;

..and observe the output:

object

at 5252736. 502680h 240232000

id: 13. Dh 150

name: "userl\x00..."

next: object
at 5252848. 5026F0h 240233600
id: 14. Eh 160
name: "user2\x00..."

next: 0x0ioc4

Please note that it is possible to pass as integer (which is a pointer) to a function that expects a
pointer to a structure.

FindFirst/FindNext APIs example

In this example, we call the APIs directly without permanently setting their prototype first.

static main ()

{
auto fd, h, n, ok;

fd = object(); // create an object
h = dbg appcall (
LocByName ("kernel32 FindFirstFileA"),
"HANDLE __Stdcall FindFirstFileA (LPCSTR lpFileName, LPWIN32_FIND_DATAA
lpFindFileData);",
"c:\\windows*.exe",

Using LoadLibrary/GetProcAddress

In this example, we are going to initialize the APIs by setting up their prototypes correctly so we
can use them later conveniently.

Retrieving application's command line

Specifying Appcall options

Appcall can be configured with set _appcall options () and passing one or more options:

e APPCALL MANUAL: Only set up the appcall, do not run it (you should call
cleanup appcall () when finished). Please Refer to the "Manual Appcall" section for
more information.

e APPCALL DEBEV: If this bit is set, exceptions during appcall will generate IDC
exceptions with full information about the exception. Please refer to the "Capturing
exception debug events" section for more information.

It is possible to retrieve the Appcall options, change them and then restore them back. To retrieve
the options use the get appcall options ().

Please note that the Appcall options are saved in the database so if you set it once it will retain its
value as you save and load the database.

Manual Appcall

So far, we've seen how to issue an Appcall and capture the result from the script, but what if we
only want to setup the environment and manually step through a function?

This can be achieved with manual Appcall. The manual Appcall mechanism can be used to save
the current execution context, execute another function in another context and then pop back the
previous context and continue debugging from that point.

Let us directly illustrate manual Appcall with a real life scenario:

1. You are debugging your application
You discover a buggy function (foo()) that misbehaves when called with certain
arguments: foo(0Oxdeadbeef)

3. Instead of waiting until the application calls foo() with the desired arguments that can
cause foo() to misbehave, you can manually call foo() with the desired arguments and
then trace the function from its beginning.

4. Finally, one calls cleanup appcall () to restore the execution context

To illustrate, let us take the ref1 function (from the previous example above) and call it with an
invalid pointer:

1. Set manual Appcall mode:

set appcall options (APPCALL MANUAL) ;

2. Call the function with an invalid pointer:

refl (06);

Directly after doing that, IDA will switch to the function and from that point on we can debug:
.text:0000000140001050 ; void _ stdcall refl (int *a)

.text:0000000140001050 refl proc near

.text:0000000140001050 test rcx, rcx ; << RIP starts here
.text:0000000140001053 jz short locret 14000106A

.text:0000000140001055 mov edx, [rcx]

.text:0000000140001057 lea r8d, [rdx+1]
.text:000000014000105B mov [rcx], r8d
.text:000000014000105E lea rcx, aCalledWithDAnd ; "called
with %d and returning %d\n"

.text:0000000140001065 jmp _printf

.text:000000014000106A locret 14000106A:

.text:000000014000106A retn

.text:000000014000106A refl endp

Now you are ready to single step that function with all its arguments properly set up for you.
When you are done, you can return to the previous context by calling cleanup appcall ().

Initiating multiple manual Appcalls

It is possible to initiate multiple manual Appcalls. If manual Appcall is enabled, then issuing an
Appcall from an another Appcall will push the current context and switch to the new Appcall
context. cleanup appcall () will pop the contexts one by one (LIFO style).

Such technique is useful if you happen to be tracing a function then you want to debug another
function and then resume back from where you were!

Manual Appcalls are not designed to be called from a script (because they don't finish),
nonetheless if you use them from a script:

auto 1i;
printf ("Loop started\n"); // appcall 1
for (i=0;1i<10;i++)
{
msg ("i=%d\n", 1);
}
printf ("Loop finished\n"); // appcall 2

We observe the following:

First Appcall will be initiated

The script will loop and display the values of i in IDA's output window

Another Appcall will be initiated

The script finishes. None of the two Appcalls actually took place

The execution context will be setup for tracing the last issued Appcall

After this Appcall is finished, we observe "Loop finished"

We issue cleanup appcall and notice that the execution context is back to printf but
this time it will print "Loop started"

8. Finally when we call again cleanup appcall we resume our initial execution context

Nk W=

Capturing exception debug events

We previously illustrated that we can capture exceptions that occur during an Appcall, but that is
not enough if we want to learn more about the nature of the exception from the operating system
point of view.

It would be better if we could somehow get the last debug_event _t that occured inside the
debugger module. This is possible if we use the APPCALL_DEBEYV option. Let us repeat the
previous example but with the APPCALL_DEBEYV option enabled:

auto e;
try
{
set _appcall options (APPCALL DEBEV); // Enable debug event capturing
refl (6);
}
catch (e)
{
// Exception occured this time "e" is populated with debug event t
fields (check idd.hpp)
}

And in this case, if we dump the exception object's contents, we get these attributes:

Unhandled exception: object

can_cont: 1. 1h 1o

code: 3221225477. C0000005h 300000000050

ea: 4198442. 40102Ah 200100520

eid: 64. 40h 1000

file: "V

func: " idcexecQ"

handled: 1. 1h 1o

info: "The instruction at 0x40102A referenced memory at 0x6. The memory
could not be read"

line: 2. 2h 20

pc: 11. Bh 130

pid: 40128. 9CCOh 1163000

ref: 6. 6h 60

tid: 36044. 8CCCh 1063140

Appcall related functions
There are some functions that can be used while working with Appcalls.
parse_decl/get_tinfo/sizeof

The get tinfo () function is used to retrieve the typeinfo string associated with a given address.

/// Get type information of function/variable as 'typeinfo' object
/17 ea - the address of the object

/// type name - name of a named type

/// returns: typeinfo object, 0 - failed

/// The typeinfo object has one mandatory attribute: typid

typeinfo get tinfo(long ea);
typeinfo get tinfo(string type name);

The parse _decl () function is used to construct a typeinfo string from a type string. We already
used it to construct a typeinfo string and passed it to dbg _appcall ().

/// Parse one type declaration

/// input - a C declaration
/// flags - combination of PT ... constants or 0
/// PT FILE should not be specified in flags (it is ignored)

/// returns: typeinfo object or num 0

typeinfo parse decl (string input, long flags);

And finally, given a typeinfo string, one can use the sizeof () function to calculate the size of a
type:

/// Calculate the size of a type

/// type - type to calculate the size of

/// can be specified as a typeinfo object (e.g. the result of
get tinfo())

/// or a string with C declaration (e.g. "int")

/// returns: size of the type or -1 if error

long sizeof (typeinfo type);

Accessing enum members as constants

In IDC, it is possible to access all the defined enumerations as if they were IDC constants:

00000001 ; enum MACRO PAGE (standard) (bitfield)

00000001 PAGE NOACCESS = 1

00000002 PAGE READONLY = 2

00000004 PAGE READWRITE = 4

00000008 PAGE WRITECOPY = 8

00000010 PAGE EXECUTE = 10h

00000020 PAGE EXECUTE READ = 20h
00000040 PAGE EXECUTE READWRITE = 40h

Then one can type:

msg ("PAGE EXECUTE READWRITE=%x\n", PAGE EXECUTE READWRITE) ;

This syntax makes it even more convenient to use enumerations when calling APIs via Appcall.

Storing/Retrieving typed elements

It is possible to store/retrieve (aka serialize/deserialize) objects to/from the database (or the
debugee's memory). To illustrate, let us consider the following memory contents:

0001000C dd 100321%h
00010010 dw OFFEEh
00010012 dw OFFEEh
00010014 dd 1

And we know that this maps to a given type:

struct X
{

unsigned long a;
unsigned short b, c;
unsigned long d;

b

To retrieve (deserialize) the memory contents into a nice IDC object, we can use the
object.retrieve () function:

/// Retrieve a C structure from the idb or a buffer and convert it into an

object

/// typeinfo - description of the C structure. Can be specified

/// as a declaration string or result of \ref get tinfo() or
/// similar functions

/// src - address (ea) to retrieve the C structure from

/17 OR a string buffer previously packed with the store method
/// flags - combination of \ref object store[PIO ...] bits

void object.retrieve (typeinfo, src, flags);

Here is an example:

// Create the typeinfo string

auto t = parse decl("struct X { unsigned long a; unsigned short b, c;
unsigned long d;};", 0);

// Create a dummy object

auto o = object();

// Retrieve the contents into the object:

o.retrieve (t, 0x1000C, 0);

And now if we dump the contents of o:

IDC>print (o) ;

object
__at_: 65548. 1000Ch 2000140
00000000000000010000000000001100b
a: 16790041. 100321%h 1000310310 00000001000000000011001000011001b
b: 65518. FFEEh 1777560 00000000000000001111111111101110b
c: 65518. FFEEh 1777560 00000000000000001111111111101110b

d: 1. 1h 1o 00000000000000000000000000000001b
and again we notice the __at__ which holds the address of the retrieved object.

To store (serialize) the object back into memory, we can use the object.store () function:

/// Convert the object into a C structure and store it into the idb or a
buffer
/// typeinfo - description of the C structure. Can be specified

/// as a declaration string or result of \ref get tinfo() or
/17 similar functions

/// dest - address (ea) to store the C structure

/17 OR a reference to a destination string

/// flags - combination of PIO .. bits

void object.store(typeinfo, dest, flags);

Here's an example continuing from the previous one:

o.a++; // modify the field
o.d = 6; // modify another field
o.store(t, o. at , 0);

And finally to verify, we go to the memory address:

0001000C dd 100321Ah
00010010 dw OFFEEh
00010012 dw OFFEEh
00010014 dd 6

Using Appcall with IDAPython

The Appcall concept remains the same between IDC and Python, nonetheless Appcall/Python
has a different syntax (using references, unicode strings, etc.)

The Appcall mechanism is provided by ida_idd module (also via idaapi) through the Appcall
variable. To issue an Appcall using Python:

from idaapi import Appcall
Appcall.printf ("Hello world!\n");

One can take a reference to an Appcall:

printf = Appcall.printf
...later...
printf ("Hello world!\n");

e In case you have a function with a mangled name or with characters that cannot be used
as an identifier name in the Python language, then use the following syntax:

findclose = Appcall[" imp FindClose@4"]
getlasterror = Appcall[" imp GetLastError@0"]
setcurdir = Appcall[" imp SetCurrentDirectoryA@4"]

o In case you want to redefine the prototype of a given function, then use the
Appcall.proto(func name or func ea, prototype_string)SynHD(aSSUChZ

pass an address or name and Appcall.proto() will resolve it

loadlib = Appcall.proto(" imp LoadLibraryA@4", "int (_ stdcall
*LoadLibraryA) (const char *1lpLibFileName) ;")

Pass an EA instead of a name

freelib = Appcall.proto (LocByName (" imp FreeLibrary@4"), "int (_ stdcall
*FreelLibrary) (int hLibModule) ;")

e To pass unicode strings you need to use the Appcall.unicode() function:

getmodulehandlew = Appcall.proto(" imp GetModuleHandleW@4", "int (_ stdcall
*GetModuleHandleW) (LPCWSTR lpModuleName) ;")
hmod = getmodulehandlew (Appcall.unicode ("kernel32.d11"))

e To pass int64 values to a function you need to use the Appcall.int64 () function:

/* C code */
int64 op two64 (int64 a, int64 b, int op)
{
if (op == 1)
return a + b;
else if (op == 2)
return a - b;
else if (op == 3)
return a * b;
else if (op == 4)
return a / b;
else
return -1;

Python Appcall code:

r = Appcall.op two64 (Appcall.int64 (1), Appcall.int64(2), 1)
print ("result=", r.value)

If the returned value is also an int64, then you can use the int64.value to unwrap and retrieve
the value.

e To define a prototype and then later assign an address so you can issue an Appcall:

Create a typed object (no address is associated yet)

virtualalloc = Appcall.typedobj ("int _ stdcall VirtualAlloc(int lpAddress,
SIZE T dwSize, DWORD flAllocationType, DWORD flProtect);")

Later we have an address, so we pass it:

virtualalloc.ea = idc.get name ea (0, "kernel32 VirtualAlloc")

Now we can Appcall:
ptr = virtualalloc (0, Appcall.Consts.MEM COMMIT, 0x1000,
Appcall.Consts.PAGE EXECUTE READWRITE)

print ("ptr=%x" % ptr)
Things to note:

o We used the Appcall.Consts syntax to access enumerations (similar to what we did in
IDC)

o Ifyou replicate this specific example, a new memory page will be allocated. You need to
refresh the debugger memory layout (with idaapi.refresh debugger memory()) to
access it

Passing arguments by reference

e To pass function arguments by reference, one has to use the Appcall.byref ():

Create a byref object holding the number 5
i = Appcall.byref (5)

Call the function

Appcall.refl (1)

Retrieve the value

print ("Called the function:", i.value)

e To call a C function that takes a string buffer and modifies it, we need to use the
Appcall.buffer (initial value, [size]) function to create a buffer:

buf = Appcall.buffer ("test", 100)
Appcall.ref2 (buf)
print (buf.cstr())

e Another real life example is when we want to call the GetCurrentDirectory() API:

Take a reference

getcurdir = Appcall.proto("kernel32 GetCurrentDirectoryA", "DWORD _ stdcall
GetCurrentDirectoryA (DWORD nBufferLength, LPSTR lpBuffer);")

make a buffer

buf = Appcall.byref ("\x00" * 260)

get current directory

n = getcurdir (260, buf)

[o)

print ("curdir=%s" % buf.cstr())

e To pass int64 values by reference:

int64 t refd (inted t *a)
{
if (a == NULL)
{
printf ("No number passed!");
return -1;

}
int64 t old = *a;

We use the following Python code:

e To call a C function that takes an array of integers or an array of a given type:

First we need to use the appcall.array () function to create an array type, then we use the
array object.pack () function to encode the Python values into a buffer:

Functions that accept or return structures

Like in IDC, we can create objects and pass them with at least two methods.

The first method involves using the Appcall.obj () function that takes an arbitrary number of
keyword args that will be used to create an object with the arguments as attributes. The second
method is by using a dictionary.

Via dictionary
recl = {"id": 1, "name": "userl"}

Via Appcall.obj
rec2 = Appcall.obj (id=2, name="user2")

Appcall.printRecord (recl)
Appcall.printRecord (rec2)

And finally, if you happen to have your own object instance then just pass your object. The
IDAPython object to IDC object conversion routine will skip attributes starting and ending with

" "

FindFirst/FindNext example

For simplicity, let's alias the Appcall
a = idaapi.Appcall
getcurdir = a.proto(
"kernel32 GetCurrentDirectoryA",
"DWORD _ stdcall GetCurrentDirectoryA (DWORD nBufferLength, LPSTR
lpBuffer) ;")

getwindir = a.proto(
"kernel32 GetWindowsDirectoryA",
"UINT stdcall GetWindowsDirectoryA (LPSTR lpBuffer, UINT uSize);")

setcurdir = a.proto(
"kernel32 SetCurrentDirectoryA",
"BOOL _ stdcall SetCurrentDirectoryA (LPCSTR lpPathName);")

findfirst = a.proto(

"kernel32 FindFirstFileA",

"HANDLE stdcall FindFirstFileA (LPCSTR lpFileName, LPWIN32 FIND DATAA
lpFindFileData) ;")

findnext = a.proto(

"kernel32 FindNextFileA",

"BOOL _ stdcall FindNextFileA (HANDLE hFindFile, LPWIN32 FIND DATAA
lpFindFileData) ;")

findclose = a.proto(
"kernel32 FindClose",
"BOOL _ stdcall FindClose (HANDLE hFindFile) ;")

def test():
create a buffer
savedpath = a.byref ("\x00" * 260)
get current directory
n = getcurdir (250, savedpath)
out = []

Using GetProcAddress

Please note that we used the idaapi.inf is 64bit () method to properly unwrap integer values
that depends on the bitness of the binary.

Setting the Appcall options
In Python, the Appcall options can be set global or locally per Appcall.

o To set the global Appcall setting:

e To set the Appcall setting per Appcall:

take a reference to printf

printf = Appcall. printf

change the setting for this Appcall
printf.options = Appcall.APPCALL DEBEV
printf ("Hello world!\n")

Similarly, retrieving the Appcall options is done by either calling
Appcall.get appcall options () or by reading the options attribute (for example:
printf.options)

To cleanup after a manual Appcall use Appcall.cleanup appcall().

Calling functions that can cause exceptions

An Appcall that generates an exception while executing in the current thread will throw a Python
Exception object. This is inline with the IDC behavior we described above.

e Letus try when the Appcall options does not include the appcarLL DEBEV flag:

try:
idaapi.Appcall.cause crash()
except Exception as e:
print ("Got an exception!")

This approach is useful if you want to know whether the Appcall passes or crashes.

Now if we want more details about the exception, then we use the APPCALL DEBEV flag,
which will cause an OSError exception to be raised and have its args[0] populated with the last
debug event t:

cause crash = idaapi.Appcall.cause crash
cause crash.options = idaapi.APPCALL DEBEV
try:
cause crash()
except OSError as e:
debug event = e.args[0]
print (f"Exception: tid={debug event.tid} ea={debug event.ea:x}")
except Exception as e:
print ("Unknown exception!")

If the Appcall caused a crash, then the debug_event variable will be populated with the last
debug_event_t structure inside the osError exception handler.

Appcall related functions in Python

Storing/Retrieving objects

Storing/Retrieving objects is also supported in Python:

1. Using the IDA SDK (through the idaapi Python module)
2. Using Appcall helper functions

In this example we show how to:

1. Unpack the DOS header at address 0x140000000 and verify the fields
2. Unpack a string and see if it is unpacked correctly

Let's start with the IDA SDK helper functions first:
Struct unpacking
def test unpack struct():
name, tp, flds = idc.parse decl ("IMAGE DOS HEADER;", 0)
ok, obj = idaapi.unpack object from idb(idaapi.get idati(), tp, flds,
0x140000000, 0)
return obj.e magic == 23117 and obj.e cblp == 144

Raw unpacking
def test unpack raw():
Parse the type into a type name, typestring and fields

name, tp, flds = idc.parse decl ("struct abc t { int a, b;};", 0)
Unpack from a byte vector (bv) (aka string)
ok, obj = idaapi.unpack object from bv (
idaapi.get idati(),
tp,
flds,
b"\x01\x00\x00\x00\x02\x00\x00\x00",
0)
return obj.a == 1 and obj.b ==
print ("test unpack struct() passed:", test unpack struct())
print ("test unpack raw() passed:", test unpack raw())

Now to accomplish similar result using Appcall helper functions:
Struct unpacking with Appcall
def test unpack struct():
tp = idaapi.Appcall.typedobj ("IMAGE DOS HEADER;")
ok, obj = tp.retrieve (0x140000000)
return ok and obj.e magic == 23117 and obj.e cblp == 144

Raw unpacking with Appcall

def test unpack raw/():
global tp
Parse the type into a type name, typestring and fields
tp = idaapi.Appcall.typedobj ("struct abc t { int a, b;};")
ok, ob] = tp.retrieve (b"\x01\x00\x00\x00\x02\x00\x00\x00")
return obj.a == 1 and obj.b == 2

print ("test unpack struct() passed:", test unpack struct())
print ("test unpack raw() passed:", test unpack raw())

When it comes to storing, instead of using the Appcall's typedobj.retrieve (), we can use the

typedobj.store () function:
Packs/Unpacks a structure to the database using appcall facilities
def test pack idb(ea):

print ("%$x: ..." % ea)
tp = a.typedobj ("struct { int a, b; char x[4];};")

o = a.obj(a=1l6, b=17,x="abcd")
return tp.store(o, ea) ==

ea = idc.here() # some writable area
if test pack idb(ea):

print ("cool!")
idaapi.refresh debugger memory ()

Accessing enum members as constants

Like in IDC, to access the enums, one can use the Appcall.Consts object:

print ("PAGE EXECUTE READWRITE=%x" % Appcall.Consts.PAGE EXECUTE READWRITE)

If the constant was not defined then an attribute error exception will be thrown. To prevent that,
use the appcall.valueof () method instead, which lets you provide a default value in case a
constant was absent:

print("PAGE_EXECUTE_READWRITE=%X" % Appcall.valueof("PAGE_EXECUTE_READWRITE",
0x40))

Please send your comments or questions to support@hex-rays.com

mailto:support@hex-rays.com

	Introduction
	Quick start

	Using AppCall with IDC
	Passing arguments by reference
	__usercall calling convention
	Variadic functions
	Calling functions that might cause exceptions
	Functions that accept or return structures
	Calling an API that receives a structure and its size
	Working with opaque types
	FindFirst/FindNext APIs example
	Using LoadLibrary/GetProcAddress
	Retrieving application's command line
	Specifying Appcall options
	Manual Appcall
	Initiating multiple manual Appcalls

	Capturing exception debug events
	Appcall related functions
	parse_decl/get_tinfo/sizeof

	Accessing enum members as constants
	Storing/Retrieving typed elements

	Using Appcall with IDAPython
	Passing arguments by reference
	Functions that accept or return structures
	FindFirst/FindNext example
	Using GetProcAddress

	Setting the Appcall options
	Calling functions that can cause exceptions
	Appcall related functions in Python
	Storing/Retrieving objects
	Accessing enum members as constants

