
Debugging iOS Applications with IDA Pro

Last updated on June 25, 2020 Ñ v0.1

1. Overview
This tutorial discusses optimal strategies for debugging native iOS applications with IDA Pro.

IDA Pro supports remote debugging on any iOS version since iOS 9 (including iPadOS). Debugging
is generally device agnostic so it shouldnÕt matter which hardware youÕre using as long as itÕs
running iOS. The debugger itself can be used on any desktop platform that IDA supports
(Mac/Windows/Linux), although using the debugger on Mac makes more features available.

Note that IDA supports debugging on both jailbroken and non-jailbroken devices. Each environment
provides its own unique challenges and advantages, and we will discuss both in detail in this
writeup.

2. Getting Started
The quickest way to get started with iOS debugging is to use Xcode to install a sample app on your
device, then switch to IDA to debug it.

In this example weÕll be using an iPhone SE 2 with iOS 13.4 (non-jailbroken) while using IDA 7.5 SP1
on OSX 10.15 Catalina. Start by launching Xcode and use menu File>New>ProjectÉ to create a new
project from one of the iOS templates, any of them will work:

Table of Contents
1. Overview . Ê1
2. Getting Started . Ê1

2.1. Preparing a Debugging Environment . Ê2
3. Source Level Debugging. Ê4
4. Debugging DYLD. Ê6
5. Debugging the DYLD Shared Cache. Ê9

5.1. Initial Analysis . Ê10
5.2. Debugger Configuration. Ê12
5.3. Further Analysis . Ê13

6. Debugging System Applications . Ê13
6.1. Patching the debugserver . Ê14
6.2. IDA Configuration . Ê14
6.3. Conclusion. Ê16

7. Troubleshooting . Ê16
8. Notes . Ê17

Hex-Rays | State-of-the-art binary code analysis solutions Debugging iOS Applications with IDA Pro

Copyright (c) 2020 Hex-Rays SA. All rights reserved. Page 1 of 17

After selecting a template, set the following project options:

Note the bundle identifier primer.idatest , it will be important later. For the Team option choose the
team associated with your iOS Developer account, and click OK. Before building be sure to set the
target device in the top left of the Xcode window:

Now launch the build in Xcode. If it succeeds then Xcode will install the app on your device
automatically.

2.1. Preparing a Debugging Environment
Now that we have a test app installed on our device, letÕs prepare to debug it. First we must ensure
that the iOS debugserver is installed on the device. Since our device is not jailbroken, this is not
such a trivial task. By default iOS restricts all remote access to the device, and such operations are
managed by special MacOS Frameworks.

Fortunately Hex-Rays provides a solution. Download the ios_deploy utility from our downloads
page. This is a command-line support utility that can perform critical tasks on iOS devices without
requiring a jailbreak. Try running it with the listen phase. If ios_deploy can detect your device it will
print a message:

$ ios_deploy listen
Device connected:
- name: iPhone SE 2
- model: iPhone SE 2
- ios ver: 13.4
- build: 17E8255
- arch: arm64e
- id : XXXXXXXX-XXXXXXXXXXXXXXXX

Use the mount phase to install DeveloperDiskImage.dmg, which contains the debugserver:

$ export DEVELOPER=/Applications/Xcode.app/Contents/Developer
$ export DEVTOOLS=$DEVELOPER/Platforms/iPhoneOS.platform/DeviceSupport
$ ios_deploy mount -d $DEVTOOLS/13.4/DeveloperDiskImage.dmg

The device itself is now ready for debugging. Now letÕs switch to IDA and start configuring the
debugger. Load the idatest binary in IDA, Xcode likely put it somewhere in its DerivedData directory:

$ alias ida64="/Applications/IDA \ Pro\ 7.5\ sp1/ida64.app/Contents/MacOS/ida64"
$ export XCDATA=~/Library/Developer/Xcode/DerivedData
$ ida64 $XCDATA/idatest/Build/Products/Debug-iphoneos/idatest.app/idatest

Then go to menu Debugger>Select debuggerÉ and select Remote iOS Debugger:

Hex-Rays | State-of-the-art binary code analysis solutions Debugging iOS Applications with IDA Pro

Copyright (c) 2020 Hex-Rays SA. All rights reserved. Page 2 of 17

https://www.hex-rays.com/products/ida/support/ida/ios_deploy.zip

When debugging a binary remotely, IDA must know the full path to the executable on the target
device. This is another task that iOS makes surprisingly difficult. Details of the filesystem are not
advertised, so we must use ios_deploy to retrieve the executable path. Use the path phase with the
appÕs bundle ID:

$ ios_deploy path -b primer.idatest
/private/var/containers/Bundle/Application/<UUID>/idatest.app/idatest

Use this path for the fields in Debugger>Process optionsÉ

NOTE: the path contains a hex string representing the applicationÕs 16-byte UUID. This id is
regenerated every time you reinstall the app, so you must update the path in IDA whenever the app
is updated on the device.

Now go to Debugger>Debugger options>Set specific optionsÉ and ensure the following fields are
set:

Make special note of the Symbol path option. This directory contains symbol files extracted from
your device. Both IDA and Xcode use these files to load symbol tables for system libraries during
debugging (instead of reading the tables in process memory), which will dramatically speed up
debugging.

Hex-Rays | State-of-the-art binary code analysis solutions Debugging iOS Applications with IDA Pro

Copyright (c) 2020 Hex-Rays SA. All rights reserved. Page 3 of 17

Xcode likely already created this directory when it first connected to your device, but if not you can
always use ios_deploy to create it yourself:

$ ios_deploy symbols
Downloading /usr/lib/dyld
Downloading 0.69 MB of 0.69 MB
Downloading /System/Library/Caches/com.apple.dyld/dyld_shared_cache_arm64e
Downloading 1648.38 MB of 1648.38 MB
Extracting symbol file: 1866/1866
/Users/troy/Library/Developer/Xcode/iOS DeviceSupport/13.4 (17E8255)/Symbols: done

Also ensure that the Launch debugserver automatically option is checked. This is required for non-
jailbroken devices since we have no way to launch the server manually. This option instructs IDA to
establish a connection to the debugserver itself via the MacOS Frameworks, which will happen
automatically at debugging start.

Lastly, Xcode might have launched the test application after installing it. Use the proclist phase to
retreive the appÕs pid and terminate it with the kill phase:

$ ios_deploy proclist -n idatest
32250
$ ios_deploy kill -p 32250

Finally we are ready to launch the debugger. Go to main in IDAÕs disassembly view, use F2 to set a
breakpoint, then F9 to launch the process, and wait for the process to hit our breakpoint:

You are free to single step, inspect registers, and read/write memory just like any other IDA
debugger.

3. Source Level Debugging
You can also use IDA to debug the source code of your iOS application. LetÕs rebuild the idatest
application with the DWARF with dSYM File build setting:

Since the app is reinstalled, the executable path will change. WeÕll need to update the remote path in
IDA:

$ ios_deploy path -b primer.idatest

Hex-Rays | State-of-the-art binary code analysis solutions Debugging iOS Applications with IDA Pro

Copyright (c) 2020 Hex-Rays SA. All rights reserved. Page 4 of 17

Be sure to enable Debugger>Use source-level debugging, then launch the process. At runtime IDA
will be able to load the DWARF source information:

Note that the debugserver does not provide DWARF information to IDA - instead IDA looks for dSYM
bundles in the vicinity of the idb on your local filesystem. Thus if you want IDA to load DWARF info
for a given module, both the module binary and its matching dSYM must be in the same directory
as the idb, or in the idbÕs parent directory.

For example, in the case of the idatest build:

$ tree
.
!"" idatest.app
!"" idatest
$"" idatest.i64
$"" idatest.app.dSYM
Ê $"" Contents
Ê $"" Resources
Ê $"" DWARF
Ê $"" idatest

IDA was able to find the idatest binary next to idatest.i64 , as well as the dSYM bundle next to the
parent app directory.

If IDA canÕt find DWARF info on your filesystem for whatever reason, try launching IDA with the
command-line option -z440010 , which will enable much more verbose logging related to source-
level debugging:

Looking for Mach-O file "idatest.app/idatest.dSYM/Contents/Resources/DWARF/idatest"
File "idatest.app/idatest.dSYM/Contents/Resources/DWARF/idatest" exists? -> No.
Looking for Mach-O file "idatest.app.dSYM/Contents/Resources/DWARF/idatest"
File "idatest.app.dSYM/Contents/Resources/DWARF/idatest" exists? -> Yes.
Looking for cpu=16777228:0, uuid=7a09f307-7503-3c0d-a182-ab552c1bf182.
Candidate: cpu=16777228:0, uuid=7a09f307-7503-3c0d-a182-ab552c1bf182.
Found, with architecture #0
DWARF: Found DWARF file "idatest.app.dSYM/Contents/Resources/DWARF/idatest"

Hex-Rays | State-of-the-art binary code analysis solutions Debugging iOS Applications with IDA Pro

Copyright (c) 2020 Hex-Rays SA. All rights reserved. Page 5 of 17

