Hex-Rays| State-of-the-art binary code analysis solutions Debugging iOS Applications with IDA Pro

Debugging iI0OS Applications with IDA Pro

Table of Contents

1. Overview 1
2. Getting Started 1
2.1. Preparing a Debugging Environment 2
3. Source Level Debugging 4
4. Debugging DYLD 6
5. Debugging the DYLD Shared Cache 9
5.1. Initial Analysis 10
5.2. Debugger Configuration 42
5.3. Further Analysis a3
6. Debugging System Applications 13
6.1. Patching the debugserver 14
6.2. IDA Configuration 14
6.3. Conclusion 16
7. Troubleshooting 16
8. Notes a7

Last updated on June 25, 2020 N v0.1

1. Overview

This tutorial discusses optimal strategies for debugging native iOS applications with IDA Pro.

IDA Pro supports remote debugging on any iOS version since iOS 9 (including iPadOS). Debugging
is generally device agnostic so it shouldnOt matter which hardware youOre using as long as itOs
running iOS. The debugger itself can be used on any desktop platform that IDA supports
(Mac/Windows/Linux), although using the debugger on Mac makes more features available.

Note that IDA supports debugging on both jailbroken and non-jailbroken devices. Each environment

provides its own unique challenges and advantages, and we will discuss both in detail in this
writeup.

2. Getting Started

The quickest way to get started with iOS debugging is to use Xcode to install a sample app on your
device, then switch to IDA to debug it.

In this example weOll be using an iPhone SE 2 with iOS 13.4 (non-jailbroken) while using IDA 7.5 SP1

on OSX 10.15 Catalina. Start by launching Xcode and use mentFile>New>ProjectE to create a new
project from one of the iOS templates, any of them will work:

Choose a template for your new project:

m watchOS tvOS macOS Cross-platform {@

Application

1] e - - s

Single View App Game Augmented Document Master-Detail App

Reality App Based App
= O
* eee 0o
Tabbed App Sticker Pack App iMessage App

Copyright (c) 2020 Hex-Rays SA. All rights reserved. Page 1 of 17

Hex-Rays| State-of-the-art binary code analysis solutions Debugging iOS Applications with IDA Pro

After selecting a template, set the following project options:

Product Name: ‘ idatest

Team: None E
Organization Name:
Organization Identifier: primer
Bundle Identifier: primer.idatest
Language: Objective-C E
User Interface: =~ Storyboard E

Note the bundle identifier primer.idatest , it will be important later. For the Team option choose the
team associated with your iOS Developer account, and click OK. Before building be sure to set the
target device in the top left of the Xcode window:

[) ®) /; idatest)] iPhone SE 2

Now launch the build in Xcode. If it succeeds then Xcode will install the app on your device
automatically.

2.1. Preparing a Debugging Environment

Now that we have a test app installed on our device, letOs prepare to debug it. First we must ensure
that the iOS debugserver is installed on the device. Since our device is not jailbroken, this is not
such a trivial task. By default iOS restricts all remote access to the device, and such operations are

managed by special MacOS Frameworks.

Fortunately Hex-Rays provides a solution. Download theios_deploy utility from our downloads
page. This is a command-line support utility that can perform critical tasks on iOS devices without
requiring a jailbreak. Try running it with the listen phase. If ios_deploy can detect your device it will
print a message:

$ ios_deploy listen

Device connected:

-name: iPhone SE 2

- model: iPhone SE 2

-iosver:13.4

- build: 17E8255

- arch: armé64e

- id:) 0.9.0.9.9.0.9.0.0.9.9.9.9.0.9.0.9.9.9.9.0.9.0 ¢

Use the mount phase to install DeveloperDiskimage.dmg, which contains the debugserver:

$ export DEVELOP#Rpplications/Xcode.app/Contents/Developer
$ export DEVTOGHHEVELORPRtforms/iPhoneOS.platform/DeviceSupport
$ ios_deploy mount -d $DEVTOUJLS.4/DeveloperDiskimage.dmg

The device itself is now ready for debugging. Now letOs switch to IDA and start configuring the
debugger. Load theidatest binary in IDA, Xcode likely put it somewhere in itsDerivedData directory:

$ alias ida64="/Applications/IDA \ Pro\ 7.5\ spl/ida64.app/Contents/MacOS/ida64"
$ export XCDAFA/Library/Developer/Xcode/DerivedData
$ ida64 $XCDATidatest/Build/Products/Debug-iphoneos/idatest.app/idatest

Then go to menu Debugger>Select debuggerE and select Remote iOS Debugger.

Copyright (c) 2020 Hex-Rays SA. All rights reserved. Page 2 of 17

https://www.hex-rays.com/products/ida/support/ida/ios_deploy.zip

Hex-Rays| State-of-the-art binary code analysis solutions Debugging iOS Applications with IDA Pro

| NON) ® Select a debugger
Available debuggers

No debugger

Remote GDB debugger

Remote XNU debugger
© Remote iOS debugger

Trace replayer

When debugging a binary remotely, IDA must know the full path to the executable on the target
device. This is another task that iOS makes surprisingly difficult. Details of the filesystem are not

advertised, so we must use ios_deploy to retrieve the executable path. Use thepath phase with the
appOs bundle ID:

$ ios_deploy path -b primer.idatest
Iprivate/var/containers/Bundle/Application/<UUID>/idatest.app/idatest

Use this path for the fields in Debugger>Process optionsE

[NON) @ Debug application setup: ios

NOTE: all paths must be valid on the remote computer

Application iers/Bundle/Application/CD1B48CF-D847-430A-A960-5110F6925C50/idatest.app/idatest i
Input file iers/Bundle/Application/CD1B48CF-D847-430A-A960-5110F6925C50/idatest.app/idatest E
Parameters]

Help Cancel “

NOTE: the path contains a hex string representing the applicationOs 16-byte UUID. This id is

regenerated every time you reinstall the app, so you must update the path in IDA whenever the app
is updated on the device.

Now go to Debugger>Debugger options>Set specific optionsE and ensure the following fields are

set:
[NOX | R i0S configuration
Architecture ARM64 (AArch64)
Max packet size -1 E
Timeout 1000 B
Syslog flags E
Symbol path [Users/troy/Library/Developer/Xcode/iOS DeviceSupport/13.4 (17E8255)/Symbols E
Device iPhone SE 2 (iPhone SE 2, i0S 13.4) E Launch debugserver automatically

Disable dyld notify

Help cancel (LS

Make special note of the Symbol path option. This directory contains symbol files extracted from
your device. Both IDA and Xcode use these files to load symbol tables for system libraries during

debugging (instead of reading the tables in process memory), which will dramatically speed up
debugging.

Copyright (c) 2020 Hex-Rays SA. All rights reserved. Page 3 of 17

Hex-Rays| State-of-the-art binary code analysis solutions Debugging iOS Applications with IDA Pro

Xcode likely already created this directory when it first connected to your device, but if not you can
always use ios_deploy to create it yourself:

$ ios_deploy symbols

Downloading /usr/lib/dyld

Downloading 0.69 MB of 0.69 MB

Downloading /System/Library/Caches/com.apple.dyld/dyld_shared_cache_arm64e
Downloading 1648.38 MB of 1648.38 MB

Extracting symbol file: 1866/1866

/Usersltroy/Library/Developer/Xcode/iOS DeviceSupport/13.4 (17E8255)/Symbols: done

Also ensure that the Launch debugserver automatically option is checked. This is required for non-
jailbroken devices since we have no way to launch the server manually. This option instructs IDA to
establish a connection to the debugserver itself via the MacOS Frameworks, which will happen
automatically at debugging start.

Lastly, Xcode might have launched the test application after installing it. Use the proclist phase to
retreive the appOs pid and terminate it with thekill phase:

$ ios_deploy proclist -n idatest
32250
$ ios_deploy kill -p 32250

Finally we are ready to launch the debugger. Go tomain in IDAOs disassembly view, us€2 to set a
breakpoint, then F9 to launch the process, and wait for the process to hit our breakpoint:

IDA View-PC o e B General registers

__text:0000000104E5A1EC X11 3 4 MEMORY: 3
text:0000000104E5ALEC ; int _ cdecl main(int argc, const char **argv, const char **envp) 4, 2 (o TR 1
__text:0000000104E5A1EC EXPORT _main - :
text:0000000104E5A1EC _main X13 00000000ECA9419D &, MEMORY:00000000ECA9419D
—_text:0000000104E5A1EC X14 00000000ECC94800 & MEMORY:00000000ECCI4800
__text:0000000104E5A1EC context= -0x20 X15 0000000000000129 & MEMORY:0000000000000129
_text:0000000104E5A1EC location= -0x18 X16 0000000104ESALEC & _main

text:0000000104E5A1EC argv= -0x10
text:0000000104E5A1EC var 8= -8
text:0000000104E5A1EC var. 4 X18 4 MEMORY:

X17 00000001DEOBD4B0 & libprotobuf-lite.dylib: auth got:

__text:0000000104E5A1EC var_s0= 0 X19 \ MEMORY:
text:0000000104E5A1EC x20 \ MEMORY:
__text:0000000104E5A1F0 STP X29, X30, [sp,,Oxzm’vaLso] E— x21 4 MEMORY:
—_text:0000000104E5A1F4 ADD X29, SP, #0x20 x22 4 MEMORY :
—text:0000000104E5A1F8 STUR WIR, [X29,#var 4] x23 & MEMORY:
_text:0000000104E5A1FC STUR W0, [X29,#var 8] %24 T
—text:0000000104E5A200 STR X1, [SP,#0x20%argv] - :
__text:0000000104E5A204 MOV X8, #0 x25 4 MEMORY:
—text:0000000104E5A208 STR X8, [SP,#0x20+location] X26 4 MEMORY :
_text:0000000104E5A20C BL _objc_autoreleasePoolPush x27 \ MEMORY:
—_text:0000000104E5A210 ADRL X8, classRef_AppDelegate .
“text:0000000104E5A218 LDR X8, [X8] SN OE CRCTA SRS A DeTeg s el 2 A A D D O R o
_text:0000000104E5A21C STR X0, [SP,#0x20+context] X29 000000016AFABBO0 & MEMORY:000000016AFABB00
—text:0000000104E5A220 MOV X0, X8 X30 000000019C2D12DC & libdyld.dylib: _text: start+4
__text:0000000104E5A224 BL _objc_opt_class SP 000000016AFABAF0 & MEMORY:000000016AFABAFO
text:0000000104E5A228 BL NSStringFromClass PC 0000000104ESALEC &, _main
000061EC 0000000104E5A1EC: _main (Synchronized with PC) PSR 60000000 -
@ Modules
Path Base
GE /private/var/containers/Bundle/Application/CD1B48CF-D847-430A-A960-5110F6925C50/idatest.app/idatest 0000000104E54000
{58 /usr/lib/dyld 0000000104F44000
/usr/lib/system/libsystem_trace.dylib 000000019C0B2000
8 /usr/lib/system/libxpc.dylib 000000019C0C9000
8 /usr/lib/system/libsystem blocks.dylib 000000019COFD0O00
@ /usr/lib/system/libsystem c.dylib 000000019COFE000
@ /usr/lib/system/libdispatch.dylib 000000019C17D000
/usr/lib/system/libsystem malloc.dylib 000000019C1BB000
Line 1 of 273

You are free to single step, inspect registers, and read/write memory just like any other IDA
debugger.

3. Source Level Debugging

You can also use IDA to debug the source code of your iOS application. LetOs rebuild thiglatest
application with the DWARF with dSYM Filebuild setting:

¥ Debug Information Format DWARF with dSYM File DWARF with dSYM File ¢ DWARF with dSYM File {
Debug DWARF with dSYM File &
Release DWARF with dSYM File ¢

Since the app is reinstalled, the executable path will change. WeOll need to update the remote path in
IDA:

$ ios_deploy path -b primer.idatest

Copyright (c) 2020 Hex-Rays SA. All rights reserved. Page 4 of 17

Hex-Rays| State-of-the-art binary code analysis solutions Debugging iOS Applications with IDA Pro

Be sure to enable Debugger>Use source-level debugging, then launch the process. At runtime IDA
will be able to load the DWARF source information:

Note that the debugserver does not provide DWARF information to IDA - instead IDA looks for dSYM
bundles in the vicinity of the idb on your local filesystem. Thus if you want IDA to load DWARF info
for a given module, both the module binary and its matching dSYM must be in the same directory
as the idb, or in the idbOs parent directory.

For example, in the case of theidatest build:

$ tree

I"" idatest.app
" idatest
$"™ idatest.i64
$" idatest.app.dSYM
$" Contents
$"' Resources
$"" DWARF
$" idatest

T m m me

IDA was able to find the idatest binary next to idatest.i64 , as well as the dSYM bundle next to the
parent app directory.

If IDA canOt find DWARF info on your filesystem for whatever reason, try launching IDA with the

command-line option -z440010, which will enable much more verbose logging related to source-
level debugging:

Looking for Mach-O file "idatest.app/idatest.dSYM/Contents/Resources/DWARF/idatest"
File "idatest.app/idatest.dSYM/Contents/Resources/DWARF/idatest" exists? -> No.
Looking for Mach-O file “idatest.app.dSYM/Contents/Resources/DWARF/idatest"

File "idatest.app.dSYM/Contents/Resources/DWARF/idatest" exists? -> Yes.

Looking for cpu=16777228:0, uuid=7a09f307-7503-3c0d-a182-ab552c1bf182.
Candidate: cpu=16777228:0, uuid=7a09f307-7503-3c0d-a182-ab552¢c1bf182.

Found, with architecture #0

DWARF: Found DWARF file "idatest.app.dSYM/Contents/Resources/DWARF/idatest"

Copyright (c) 2020 Hex-Rays SA. All rights reserved. Page 5 of 17

