
Debugging Windows Applications with IDA Bochs Plugin
Copyright 2010 Hex-Rays SA

Quick overview:

The IDA Bochs debugger plugin allows malware researchers to debug malicious code in a
safe/emulated environment. This is implemented using the open source x86 emulator Bochs,.

To get started, you need to install supported Bochs version (v2.3.7 or above) from
http://bochs.sourceforge.net/

After installing it, make sure you « Switch Debugger » and select the Bochs debugger.

IDA can automatically detect where Bochs is installed, but if it fails it is possible to reconfigure it in the
Debugger Setup / Specific Debugger options:

http://bochs.sourceforge.net/

In this screen, « Debugger specific options », we configure the Bochs plugin:

BOCHSDBG
This parameter specifies the path to the bochsdbg.exe executable. IDA tries to guess it by looking at the
BXSHARE environment variable or by checking the system registry for Bochs registry keys

BOCHSRC

This is the path to the Bochs configuration file template. It contains special variables prefixed with "$".
These variables should not be modified or changed by the user, they are automatically filled by the
plugin. Other entries in this template can be modified as needed.

Operation mode

The user can choose between the following three operation modes:
• Disk image: Debug a complete operating system (use IDA Pro as an interface to the Bochs

debugger)
• IDB: Debug the contents of the database (or just a selection)
• PE: Debug an MS Windows PE files

Delete image files upon session end

If enabled, IDA will automatically delete the Bochs disk images used during the debugging session
(this option only applies to IDB and PE operation modes).
In the IDB operation mode, the Bochs plugin tries to find a previously created image, verifies that it
corresponds to the database and uses it as is. Unchecking this option in this case (IDB operation mode)
can speed up launching the debugger.

Debugging a Bochs disk image:

With the disk image loader it is possible to debug any Bochs disk image.

First prepare a virtual machine:

• myvm.bochsrc: This file contains the Bochs configuration, such as the disk image file name,
cdrom config, network card, bios file, etc...

• myvm_diskimage.bin: This is the actual disk image file containing the operating system

Then test if the VM works properly with Bochs:

« bochs.exe -f myvm.bochsrc »

If everything is okay then Bochs should start emulating the operating system in question.

Now let us debug the image with IDA Pro:

• Run IDA Pro and load the bochsrc file (for example: myvm.bochsrc)
• IDA Pro should recognize the file:

• The first disk sector will be loaded into IDA Pro

• Now simply add breakpoints and/or just press F9 to start debugging

In case IDA Pro did not recognize the bochsrc file, then manually setup Bochs like this:

• Run IDA Pro with a dummy database: “idag -t”
• Save the database in the same directory as the Bochs diskimage and bochsrc file
• Select the “Bochs local debugger” from the debuggers menu
• Go to “Debugger / Specific options” and make sure the “Disk image” operation mode is

selected
• Go to “Debugger / Process options” and enter the bochsrc file name in the “Application” field.

(the other fields are ignored)

That's it. Now we can simply press F9 and start the debugger.

In this screenshot, IDA Bochs in Disk image mode is used to debug MS Windows XP.

It is possible to send commands using the command line interpreter in IDA Pro. First press « . » (dot)
and then type the desired command.

For example, we can send Bochs debugger the « info idt » command:

Debugging code snippets:

The IDB operation mode is used to debug code snippets by simply selecting the code from the
database.
In this mode, the input file format is not important. It is possible to debug code snippet from an object
file, DLL file, memory dump or any other database that contains x86/32bits code.

Using this mode is in fact too simple, we just have to tell it what code to debug:

• Current cursor position: Position the cursor in the database and press F9 to start debugging
• Selection: Select start and End ranges and press F9
• ENTRY and EXIT labels: Create these two labels and press F9. IDA will start executing at

« ENTRY » and stop when it reaches « EXIT »

In the following screenshot, after selecting the code, we press F9 to start debugging.

It is advisable to turn on the “Stop on debugging start” option when using the IDB mode. This enables
the debugger to suspend automatically when the debugger starts.

Debugging win32 programs:

It is possible to use the Bochs debugger plugin / PE mode to debug MS win32 programs, which can be
PE programs, DLLs and even system driver files.

The PE mode has many features, which are detailed in the help file and on the blog page
http://hexblog.com/2008/11/bochs_plugin_goes_alpha.html

This mode is best used to debug packed malware.

For example, we will load the “Mytob” virus into IDA Pro and then the Bochs debugger / PE mode to
unpack this malware.

First we put a breakpoint at the start of the program:

Now we press F9 to start the process and break at the beginning:

http://hexblog.com/2008/11/bochs_plugin_goes_alpha.html

Let us use a feature in the Bochs PE mode that will allow us to break in the proximity of the original
entrypoint. With this method, we do not have to trace all the way through the unpacking code.

• While the process is suspended, open the modules window and select “bochsys.dll”

• Now double clicking on it will show all its exports. We are interested in
“BxUndefinedApiCall”. So we simply select it and double click on it and put a breakpoint
there.

• Now we press F9 again to let the malware run.
• The first time this breakpoint is reached, we could step a bit and inspect the caller. We have a

high probability that the call came from the unpacked code. Anyway, we let us verify that by
stepping until we reach the caller

As we see, that tracing up to the caller led us to this code which looks familiar and is actually the
startup code for many VC++ programs.

Let us go to that offset and see what we got:

It looks like we located the import functions RVAs. Let us use the “renimp.idc” script to give relevant
names to these offsets:

And finally let us go back to the OEP and see how it looks like now:

That is it!

We got it unpacked, now we can delete unused segments, take a memory snapshot and get ready for
static analysis or even decompilation with the Hex-Rays decompiler.

Copyright 2010 Hex-Rays SA

