
Using IDA's GDB debugger with QEMU emulator
Copyright 2009 Hex-Rays SA

QEMU is a processor emulator which can emulate a handful of processors, including Intel x86 and
ARM architectures. It includes a GDB stub which can be used with new GDB debugger plugin in
IDA 5.4.

Getting QEMU
QEMU's home page is at http://bellard.org/qemu/. Win32 builds can be downloaded from Takeda
Toshiya's page at http://homepage3.nifty.com/takeda-toshiya/qemu/. This primer assumes you
downloaded QEMU 0.9.1 for Win32 or later. We will debug the small Linux included with QEMU.

Enabling GDB stub
After unpacking QEMU, make a copy of the qemu-win.bat file, for example qemu-win-
gdb.bat and edit it. Add -s -S to the qemu.exe call (-s enables GDB stub and -S instructs
QEMU to stop at the system start):

Run the .bat file. QEMU will stop and wait for the debugger.

http://bellard.org/qemu/
http://homepage3.nifty.com/takeda-toshiya/qemu/

Debugging with IDA

Start IDA.

If you get the welcome dialog, choose "Go".

Choose Debugger | Attach | Remote GDB debugger.

Enter "localhost" for hostname and 1234 for the port number. Click "Debugger specific options".

QEMU needs special configuration because it behave slightly differently from other GDB stubs.
Uncheck "Software breakpoints at EIP+1" and check "Use CS:IP in real mode". Make sure
Processor is set to "Intel x86". Click OK, then click OK in "Debug application setup" dialog.

Choose <attach to the process started on target> and click OK.

Debugging the BIOS

The BIOS entrypoint is displayed but the disassembly is wrong since the default MEMORY

segment is 32-bit.

Let's create some manual memory regions to reflect the real memory map.

Go to Debugger | Manual memory regions.

Right-click and choose "Insert..." (or press Ins).

Enter the following details:
Start address: F0000
End address: 100000
Base address: F000
Name: BIOS
Class: CODE
select "16-bit segment"
Click OK.

Now the disassembly is correct and you can trace the BIOS code.

Debugging the kernel
To debug the Linux kernel, we first need to create memory regions where it will execute. The usual
kernel entrypoint is at address 100000, and it can use memory almost to the maximum 4G address.

Open memory regions list (Debugger | Manual memory regions) and add a new region:

Start address: 100000
End address: F0000000
Base address: 0
Name: LINUX
Class: CODE
select "32-bit segment"
Click OK.

We now have two regions:

Double-click the LINUX region to go to its beginning.

Press F2 or choose "Add breakpoint" from the context menu.

Check "Hardware breakpoint" and select "Execute" in "Modes". Click OK.

Now press F9 or choose Debugger | Continue process. You should see BIOS and LILO messages on
the screen, and the execution will stop at the "Loading Linux...." message.

This is the initial loader which decompresses the kernel. If you press F9 once more, you'll see
"Uncompressing Linux..." and then "Ok, booting the kernel" messages in QEMU and IDA will stop
at the decompressed kernel entrypoint:

This code sets up paging table, enables paging, and then jumps to the "real" kernel entrypoint.

Adding symbols
Kernel symbols are available as /proc/ksyms or /proc/kallsyms pseudo-file after booting.
If you get that file from the VM to the host, you can add the symbols to your disassembly. Go to
File | Python command... and enter the following short script:
ksyms = open(r"D:\ksyms") #path to the ksyms file
for line in ksyms:
 addr = int(line[:8], 16)
 name = line[9:-1] # use line[11:-1] in case of kallsyms
 idaapi.set_debug_name(addr, name)
 MakeNameEx(addr, name, SN_NOWARN)
 Message("%08X: %s\n"%(addr, name))
Click OK and wait a bit until it finishes. After that you should see the symbols in the dissassembly
and name list:

file:///D:/ksyms

Happy debugging!

Copyright 2009 Hex-Rays SA

	Getting QEMU
	Enabling GDB stub
	Debugging with IDA
	Debugging the BIOS
	Debugging the kernel
	Adding symbols

