
Debugging Windows kernel under VMWare using
IDA's GDB debugger

Copyright 2009 Hex-Rays SA

Current versions of VMWare Workstation include a GDB stub for remote debugging of
the virtual machines running inside it. In version 5.4, IDA includes a debugger module
which supports the remote GDB protocol. This document describes how to use it with
VMWare. As an example, we'll debug a Windows kernel.

Preparing VM for debugging
Let's assume that you already have a VM with Windows (32-bit) installed. Before
starting the debugging, you can copy the kernel for symbol retrieval later. Copy
ntoskrnl.exe or ntkrnlpa.exe (depending on the VM configuration) from
Windows/sytem32.

Now edit the VM's .vmx file to enable GDB debugger stub:

Add these lines to the file:
 debugStub.listen.guest32 = "TRUE"
 debugStub.hideBreakpoints= "TRUE"
Save the file.

In VMWare, click "Power on this virtual machine" or click the green Play button on the

toolbar.

Wait until the VM boots.

Debugging in IDA
Start IDA.

If you get the welcome dialog, choose "Go".

Choose Debugger | Attach | Remote GDB debugger.

Enter "localhost" for hostname and 8832 for the port number.

Choose <attach to the process started on target> and click OK.

The execution should stop somewhere in the kernel (address above 0x80000000). You
can step through the code, but it's not very convenient without any names. Let's try to add
some symbols.

Identifying kernel base
To load the kernel symbols from PDB file, we first need to know at which address it is
loaded. There are many ways to find it, but we will use the KernBase pointer in the

DBGKD_GET_VERSION64 structure, which, in turn, is referenced from the KPCR
structure pointed to by the fs register.

To retrieve the base of the segment pointed to by fs, we can use the VMWare's debug
monitor "r" command. Make sure you switch the commandline interpreter to "GDB":

Then type "r fs" in the commandline (hint: use "." to switch to commandline and Esc to
switch back to disassembly):

The address mentioned after "base" will be the address of KPCR.
Navigate to the address in IDA (Jump | Jump to addres... or just "g"). You will see the
start of the KPCR structure.

We could just follow some well-known offsets, but for convenience we will make use of
the structure definitions bundled with IDA.
Choose View | Open subviews | Type libraries or press Shift-F11. You might get this
warning, which is normal in this situation:

Press OK to close it. If you cannot see the Loaded Type Libraries window, right-click the
Types tab on the main IDA window and make sure "Desktop window" item is checked:

In the Loaded Type Libraries window choose "Load type library..." from the context
menu or press Ins.

In the list, choose file named "ntddk" (hint: you can start typing the name to quickly
navigate to it) and click OK. This will make available various structures from the
Windows Device Driver Kit.
Now open the structures window (View | Open subviews | Structures or Shift-F9). There,
press Ins or choose "Add struct type..." from the Edit menu.

Click "Add standard structure". The list of predefined structures we loaded will appear.

In the list, choose structure named KPCR (again, you can start typing its name). Click
OK.
Now let's go back to the disassembly and apply the structure. Make sure you're at the
address (fs base) we found earlier, and choose Edit | Structs | Struct var... or just press
Alt-Q.

Choose the KPCR structure and click OK. You might get this warning, which can be
ignored:

The dissassembly will display structure fields nicely represented and commented.

Find the field commented KdVersionBlock and double-click or press Enter to follow
it. Name the location KdVersionBlock so that it can be easily found later.
Now we need to apply a structure DBGKD_GET_VERSION64, but it is not available in
the type libraries shipped with IDA. Its definition is available in the file wdbgexts.h
shipped with Debugging Tools for Windows or can be found on the Internet. We could
create the structure manually from its definition, but it's much easier to use IDA's built-in
C parser.
Go to View | Open subviews | Local types or press Shift-F1. Press Ins or choose
"Insert..." from the context menu.

Paste the definition of the DBGKD_GET_VERSION64 structrure from wdbgexts.h
file or Internet. Click OK.

The structure will appear in the Local Types list, but it will not be available yet in the
Structures list or in Struct var... command.

Right-click it and choose "Synchronize to idb". Click Yes in the confirmation notice and
OK in the info messagebox. Now we can apply the structure.
Go to the KdVersionBlock location we noted before and apply the new structure
(using Edit | Structs | Struct var... or Alt-Q). The structure will initially appear collapsed,
press Numpad + to uncollapse it (or choose Unhide from the View menu).

Now everything is nicely represented, and we can follow the KernBase pointer (the Fs
at the beginning of the address are caused by sign extension and can be ignored here;
double-click or Enter key still work). After following the pointer, you can see the familiar
MZ signature.

Loading symbols
To load the symbols, we will make use of the new feature IDA 5.4. Go to File | Load File
| PDB file...
Enter path to the kernel .exe you copied from the VM and the kernel base address we
found.

Press OK and IDA's PDB loader plugin will retrieve the PDB file for the .exe from
Microsoft's symbol store and apply its symbols to the disassembly.

This should make your work much easier.

Happy debugging!

Copyright 2009 Hex-Rays SA

	Preparing VM for debugging
	Debugging in IDA
	Identifying kernel base
	Loading symbols

