
Debugging iOS Applications With IDA
Copyright 2016 Hex-Rays SA

NOTE: This tutorial is now deprecated. Please see this resource instead:

https://www.hex-rays.com/wp-content/uploads/2020/06/ios_debugger_primer2.pdf

IDA 6.95 introduced the Remote iOS Debugger plugin, which allows users to debug iOS target
applications directly from IDA. It works on all supported platforms (Mac, Windows, Linux),
supports both ARM32 and ARM64 targets, and has been extensively tested with iOS 9, 10, and 11.

The goal of this tutorial is to install an example app on your iOS device and use IDA to debug it.

Before we begin, please note that the Remote iOS Debugger requires a running instance of the
Apple iOS debugserver in order to function. Since iOS devices are often jailed, spawning a remote
debugger process (or doing anything else for that matter) can be somewhat of a task.

IDA provides various ways of working with jailed devices, depending on your platform. If you are
a Mac user, continue reading. If you are a non-mac user, skip to Non-Mac users.

Quick Start
The fastest way to get started is to use Xcode to build and install a sample app, then switch to IDA
to debug it. We will cover this process in depth here. If you prefer not to use Xcode, jump ahead to
the ios_deploy section.

Creating a Sample Project
Note that since IDA depends on the iOS debugserver, IDA can only debug applications that the
debugserver can debug. Usually, the default debugserver installed by Xcode can only debug
applications that you have built with Xcode.

Thus, we must start by building a sample app ourselves, just for this tutorial.

First open Xcode.app and on the 'Welcome to Xcode' screen, choose 'Create a new Xcode project'.
Then when asked to choose a template, select one of the iOS Application templates:

https://www.hex-rays.com/wp-content/uploads/2020/06/ios_debugger_primer2.pdf

Click Next, and when asked for the project options, use the following values:

 Product Name: demo

 Organization Identifier: me

 Language: Objective-C

For the remaining fields you can use the default values.

Symbols
Once your project has been created, ensure that your device is attached to your host machine and is
selected as the current device in the top left of the Xcode window:

When you first select your device, Xcode will perform two important tasks. First it will install the
debugserver on your device (which IDA will need for debugging), and it will also extract symbol
files from dyld_shared_cache.

Symbol processing usually takes a while, and you can check the progress at the top of the Xcode
window:

When this process is completed, Xcode will store the symbols in:

 ~/Library/Developer/Xcode/iOS DeviceSupport/<iOS version>/Symbols
In IDA, copy this path to 'Symbol path' in Debugger>Debugger options>Set specific options:

Installation
In order for IDA to debug this app, it must know the path to the app's executable file. However, iOS
tends to hide these details about the file system, and as far as we know there is no way to formally

ask Xcode where exactly it has installed the app on your device.

So, we use the following workaround:

Open the source file AppDelegate.m, and in the function didFinishLaunchingWithOptions, insert
the following line:

 NSLog(@"app installation path: %@", [[NSBundle mainBundle] executablePath]);

This will ensure that the installation path will be printed in the Xcode console when the app is run.

Now click on the big Play button in the top left of the Xcode window. This will build, install, and
launch the app on your target device. Once you see that the app has been launched and the
application path as been printed to the console, press the Stop button in the top left.

Launching the Debugger
Now it's time to open our sample app in IDA. On the left side of the Xcode window, under the
Project Navigator tab, click on demo.app under the Products folder:

Then, on the right side of the Xcode window under the Utilities tab, you can find the path to newly
built app bundle. Use this path to open the app's executable file in IDA:

troy@mac:~$ ida64 /Users/troy/demo/DerivedData/demo/Build/Products/Debug-iphoneos/demo.app/demo

Once IDA has finished loading the file, select 'Remote iOS Debugger' from the combo box at the
top of the screen and set a breakpoint at main.

Now open menu Debugger>Process options... and for the 'Application' and 'Input File' fields, use
the path that was printed to the console when you ran the app in the Installation section above:

Now click Debugger>Start process, and wait for the breakpoint at main to be hit:

And that's it! You can now explore process memory, inspect registers, single step, etc. Happy
debugging!

ios_deploy
We recommend Mac users to download 'ios_deploy' from the hex-rays downloads page:

https://www.hex-rays.com/products/ida/support/ida/ios_deploy.zip

This helper utility has effectively replaced Xcode in our development cycle, and can perform all the
everyday tasks that can be difficult on iOS - like signing and installing applications, extracting
debugging symbol files from dyld_shared_cache, and retrieving the installation paths of target
executables.

See ios_deploy -h to get a quick look at what it can do.

The goal of this part of the tutorial is to use ios_deploy to install a prebuilt sample application and
debug it in IDA – with limited dependence on Xcode.

https://www.hex-rays.com/products/ida/support/ida/ios_deploy.zip

Connection
Before we get started let's perform a sanity check to make sure IDA will be able to recognize and
connect to your device. Connect a device to your Mac via USB (currently ios_deploy cannot work
over Wi-Fi), and run the following command:

troy@mac:~$ ios_deploy listen

Device connected:
- name: iPhone 6
- model: iPhone 6s
- ios ver: 10.0
- build: 14A5341a
- arch: arm64
- id: 9b72866777b672d81bcf080964926f3b9864a9b2
^C
troy@mac:~$

ios_deploy should print a message every time a device is connected/disconnected. If you see a
message like you see above, then so far so good.

Installing the debugserver
The next step is to ensure that the debugserver has been installed on your device and IDA will be
able to launch it. You can check this using the 'diagnostics' phase:

troy@mac:~$ ios_deploy diagnostics
Device: iPhone 6 (iPhone 6s, iOS 10.0)
Warning: could not launch the debugserver (The service is invalid.)
Trying to re-mount the developer disk image...
Error: could not open signature file
/Applications/Xcode.app/Contents/Developer/Platforms/iPhoneOS.platform/DeviceSupport/10.0
(14A5341a)/DeveloperDiskImage.dmg.signature
Phase 'diagnostics' failed, exiting
troy@mac:~$

If the debugserver is not present on your device, you will get a 'service is invalid' message, and the
diagnostics phase will try install the DeveloperDiskImage.dmg automatically and try again.

If diagnostics failed to find a matching DeveloperDiskImage.dmg for your device (like it did
above), you can find one manually. They are usually located in:

/Applications/Xcode.app/Contents/Developer/Platforms/iPhoneOS.platform/DeviceSupport/

Then use 'mount -d <path>' to install it:

troy@mac:~$ ios_deploy mount -d \
> /Applications/Xcode.app/Contents/Developer/Platforms/iPhoneOS.platform/DeviceSupport/10.0\ \
(14A5339a\)/DeveloperDiskImage.dmg
troy@mac:~$ ios_deploy diagnostics
Device: iPhone 6 (iPhone 6s, iOS 10.0)
Diagnostics completed. No issues to report
troy@mac:~$

If the debugserver could be launched, you should see 'Diagnostics completed. No issues to report'.

Symbols
The next step is to extract debug symbols from dyld_shared_cache. IDA relies heavily on these

symbol files in order to achieve fast and detailed debugging (as does Xcode – it usually stores
symbols in ~/Library/Developer/Xcode/iOS\ DeviceSupport when you first connect your device).

To extract the symbol files to your host, run the “symbols” phase:

troy@mac:~$ ios_deploy symbols
Copying dyld...
Downloading 0.59 MB of 0.59 MB
/tmp/dyld: done
Copying dyld_shared_cache_arm64...
Downloading 767.19 MB of 767.19 MB
/tmp/dyld_shared_cache_arm64: done
Extracting symbol file: 957/1197

When this phase completes it will store the symbols at ~/Symbols.

We can now tell IDA where to find them by setting the 'Symbol path' in Debugger>Debugger
options>Set specific options:

Installation
Now it's time to set up an example target application. We have provided a prebuilt example iOS
binary in 'ios_demo' at https://www.hex-rays.com/products/ida/support/ida/ios_demo.zip, along
with the source code. You must codesign this application in order to install and debug it on your
device, which means you must be part of the iPhone Developer program.

If the application is not properly codesigned with your developer certificate, the debugserver will
refuse to debug it, reporting a 'Failed to get task for process' error message.

See 'ios_deploy codesign -h' for more on how this process works.

Once you have verified that you have an iPhone Developer certificate and you have downloaded the
example app, cd to ios_demo/ and run the following command:

troy@mac:~/ios_demo$ ios_deploy appify -e demo

This will create an app bundle at ./demo.app, which can then be installed on your device with:

troy@mac:~/ios_demo$ ios_deploy install -b demo.app/

You can then print the installation path via:

troy@mac:~/ios_demo$ ios_deploy paths -b demo -s
/var/containers/Bundle/Application/132A825B-9EB8-4FA4-B49B-3722C0EBFF24/demo.app/demo

Launching the Debugger
Finally, it's time to launch IDA and run the debugger. First open the example app in ida:

troy@mac:~/ios_demo$ idaq demo.app/demo

Once IDA has finished loading the file, do the following:

1. Select 'Remote iOS Debugger' from the combo box at the top of the main window

2. Set a breakpoint at main.

3. Open menu Debugger>Process options...

4. Set 'Application' and 'Input file' to the path you retrieved by running 'ios_deploy paths'
above:

In this situation, IDA will not use the 'Hostname' and 'Port' fields, but it still always requires a non-
empty hostname. Just set it to 'localhost'.

Now click Debugger>Start process, and wait for the breakpoint at main to be hit:

And that's it! You can now step, explore process memory, inspect registers, etc. Happy debugging!

Troubleshooting
Process Launch

If IDA fails to launch the target process for whatever reason, it will usually print an error message
to the console window. Here are some common error messages:

• Elocked - this means the debugserver failed to launch the process because the device's
screen is locked. Simply unlock the screen and this error should go away.

• The service is invalid - this usually means IDA tried to launch a debugging utility that is
not installed on the device. Please ensure that the DeveloperDiskImage.dmg has been
mounted on your device (either via Xcode or 'ios_deploy mount').

• Efailed to get the task for process - this likely means that the debugserver does not have
permission to debug the target app. Please ensure that the target app has been properly
codesigned for debugging ('ios_deploy codesign' can do this for you).

SA: http://iphonedevwiki.net/index.php/Debugserver and AUTOLAUNCH in dbg_ios.cfg

• Device doesn't support wireless sync – this typically means that you asked MacOS to
perform a task on the device over WiFi. Some tasks (like launching the debugserver) cannot
be performed over WiFi. Try turning off WiFi on your device, or at least make sure your
mac host and device are not connected to the same WiFi network. Then, ensure that you are
still connected via USB and try again.

IDA_DEBUG_DEBUGGER

This flag will make IDA print very verbose logging messages to the console while the debugger is
running. Enable it by launching IDA with: '/path/to/idaq -z10000'

http://iphonedevwiki.net/index.php/Debugserver

If this option is enabled when using the Remote iOS debugger, IDA will log all of the packet
communication between IDA and the debugserver. Look for lines prefixed with:

> … (data sent to debugserver)

and

< … (data received from debugserver)

Often times these packets will contain messages or error codes that might describe the problem.

Syslog

You can also use the SYSLOG_FLAGS option in dbg_ios.cfg to instruct the debugserver to print
extra debug messages to the iOS system log.

You can then use 'ios_deploy syslog' while IDA is running to fetch the system log.

Working with Multiple Devices

Be careful when working with multiple iOS devices connected to your host simultaneously. In this
situation you can select the target device via menu Debugger>Debugger options>Set specific
options:

If you have multiple devices connected and you don't specify a target device, IDA will simply use
the first device it finds. The device used is not guaranteed to be deterministic, so its a good idea to
explicitly tell IDA which device to use.

Non-Mac users
On non-mac platforms, IDA has no way to launch the debugserver automatically like it does on
Mac. Thus, you must be able to ssh to your device and launch the debugserver yourself, specifying
a port to listen on. Then specify this port and the hostname of your device in the Process Options
dialog:

See http://iphonedevwiki.net/index.php/Debugserver for how to get the most out of the
debugserver.

Also see http://iphonedevwiki.net/index.php/SSH_Over_USB for an overview of how you can ssh
to your device over USB.

Symbols
IDA relies heavily on symbol files extracted from dyld_shared_cache for fast and detailed

http://iphonedevwiki.net/index.php/SSH_Over_USB
http://iphonedevwiki.net/index.php/Debugserver

debugging. It is definitely possible to debug without symbol files, but IDA will be much slower and
will be missing many symbol names.

If you manage to extract symbol files from your device (either using a third-party tool or Xcode if
you have access to a Mac), you can tell IDA where to find these files via the SYMBOL_PATH
variable in dbg_ios.cfg.

Source Level Debugging
As of IDA 7.0, you can debug your iOS apps using the source code view.

Keep these hints in mind when using source level debugging with the iOS Debugger:

• DWARF debug information must be available for your target app. The DWARF info must
either be present in the input file itself or in a dSYM bundle. For all modules in your app
(either the main executable or private frameworks), IDA will assume that the binary file and
the dSYM bundle are both present in the same directory as the current database (.idb) file.

If either the binary file or dSYM are not present next to the idb, then source level debugging
will not work.

• If you are confused about where IDA is looking for DWARF info, you can launch IDA with
the -z40000 option, which will log some of the steps IDA takes to perform source
debugging

• The Objective-C-specific “step into” action (menu Debugger>Run until message received)
also works in the source code view.

	Quick Start
	Creating a Sample Project
	Symbols
	Installation
	Launching the Debugger
	ios_deploy
	Connection
	Installing the debugserver
	Symbols
	Installation
	Launching the Debugger
	Troubleshooting
	Non-Mac users
	Symbols
	Source Level Debugging

