Debugging Mac OSX Applications with IDA Pro

Copyright 2020 Hex-Rays SA

Overview

IDA Pro fully supports debugging native OSX applications.

However, this task is riddled with gotchas and often times it demands precise workarounds that are not
required for other platforms. In this tutorial we will purposefully throw ourselves into the various pitfalls of
debugging on a Mac, in the hopes that learning things the hard way will ultimately lead to a smoother
experience overall.

Begin by downloading samples.zip which contains the sample applications used in this writeup.

Supported OSX Versions

It is Apple's unofficial policy to support only the 3 latest versions of OSX. Any older versions will usually
stop receiving security updates. Thus, Hex-Rays has adopted the same policy. We can only guarantee mac
debugging support on versions that Apple is actively maintaining.

Note however that our mac debugger has been perfectly functional since it was first developed for OSX
10.5 Leopard - so debugging on old unsupported OSX versions will probably work, but we cannot promise
to fix any issues that arise. Doing so will leave us vulnerable to old unfixed security flaws in the OS.

Codesigning & Permissions

It is important to note that a debugger running on OSX requires special permissions in order to function
properly. This means that the debugger itself must be codesigned in such a way that MacOS allows it to

inspect other processes.
The main IDA Pro application is not codesigned in this way. Later on we'll discuss why.

To quickly demonstrate this, let's open a binary in IDA Pro and try to debug it. In this example we'll be
debugging the helloworld app from samples.zip on MacOSX 10.15 Catalina using IDA 7.5. Begin by
loading the file in IDA:

$ alias ida64="/Applications/IDA\ Pro\ 7.5/ida64.app/Contents/Mac0S/idac4"

$ 1da64 helloworld

https://www.hex-rays.com/wp-content/uploads/2020/05/samples.zip
https://developer.apple.com/documentation/bundleresources/entitlements/com_apple_security_cs_debugger
https://www.hex-rays.com/wp-content/uploads/2020/05/samples.zip

Now go to menu Debugger>Select debugger and select Local Mac OS X Debugger:

% Select a debugger

Available debuggers

) No debugger

Local Bochs(x64) debugger

© Local Mac OS X debugger
PIN tracer
Remote GDB debugger
Remote Mac OS X debugger
Remote XNU debugger
Trace replayer

Immediately IDA should print a warning message to the Output window:

This program must either be codesigned or run as root to debug mac applications.

This is because IDA is aware that it is not codesigned, and is warning you that attempting to debug the
target application will likely fail. Try launching the application with shortcut F9. You will likely get this error
message:

Please run IDA with elevated permissons for local debugging.
Another solution is to run mac_server and use localhost as
the remote computer name.|

For more info, please see the 'Mac OS X debugger' help entry (shortcut F1).

Don't display this message again (for this session only)

Codesigning IDA Pro might resolve this issue, but we have purposefully decided not to do this. Doing so
would require refactoring IDA's internal plugin directory structure so that it abides by Apple's bundle
structure guidelines. This would potentially break existing plugins as well as third-party plugins written by
users. We have no plans to inconvenience our users in such a way.

Also note that running IDA as root will allow you to use the Local Mac OS X Debugger without issue, but
this is not advisable.

A much better option is to use IDA's mac debug server - discussed in detail in the next section.

Using the Mac Debug Server

A good workaround for the debugging restrictions on OSX is to use IDA's debug server - even when
debugging local apps on your mac machine. The mac debug server is a standalone application that
communicates with IDA Pro via IPC, so we can ship it pre-codesigned and ready for debugging right out of
the box:

$ codesign -dvv /Applications/IDA\ Pro\ 7.5/idabin/dbgsrv/mac_servero4
Executable=/Applications/IDA Pro 7.5/ida.app/Contents/Mac0S/dbgsrv/mac_serveroc4
Identifier=com.hexrays.mac_serverxo4

Format=Mach-0 thin (x86_64)

CodeDirectory v=20100 size=6090 flags=0x@(none) hashes=186+2 location=embedded

Signature size=9002

Authority=Developer ID Application: Hex-Rays SA (ZP7XF6252M)
Authority=Developer ID Certification Authority
Authority=Apple Root CA

Timestamp=May 19, 2020 at 4:13:31 AM

Let's try launching the server:

$ /Applications/IDA\ Pro\ 7.5/idabin/dbgsrv/mac_servero4
IDA Mac 0S X 64-bit remote debug server(MT) v7.5.26. Hex-Rays (c) 2004-2020
Listening on 0.0.0.0:23946. ..

Now go back to IDA and use menu Debugger>Switch debugger to switch to remote debugging:

% Select a debugger

Available debuggers

No debugger
Local Bochs(x64) debugger
) Local Mac OS X debugger

PIN tracer
Remote GDB debugger

© Remote Mac OS X debugger
Remote XNU debugger
Trace replayer

Now use Debugger>Process options to set the Hosthame and Port fields to localhost and 23946.

(Note that the port number was printed by mac_server64 after launching it):

Application /Users/troy/helloworld
Input file /Users/troy/helloworld
Directory /Users/troy
Parameters
Hostname localhost Port 23946

Also be sure to check the option Save network settings as default so IDA will remember this
configuration.

Now go to _main in the helloworld disassembly, press F2 to set a breakpoint, then F9 to launch the
process. Upon launching the debugger you might receive this prompt from the OS:

Developer Tools Access is trying to take control of
another process.

Enter your password to allow this.
Username:

Password:

Cancel Take Control

OSX is picky about debugging permissions, and despite the fact that mac_server is properly codesigned
you still must explicitly grant it permission to take control of another process. Thankfully this only needs to
be done once per login session, so OSX should shut up until the next time you log out (we discuss how to
disable this prompt entirely in the Debugging Over SSH section below).

After providing your credentials the debugger should start up without issue:

IDA View-RIP O ©® @ I8 General registers
Lo pesssssisesneet sosRovrins s 100000100000720 9 _sain
ext: s Emmmssmmmmmmmm=
text:0000000100000F50 1R (OO0 |-
—_text:0000000100000F50 ; Attributes: bp-based frame RCX 00007FFEEFBFFD48 W debug017:
—_text:0000000100000F50 RDX 00007FFEEFBFFCFO0 &y debug017:

text:0000000100000F50 ; int _ cdecl main(int argc, const char **argv, const char **envp) RSI 00007FFEEFBFFCEQ & debug017:
text:0000000100000F50 public _main RDI 0000000000000001 &
text:0000000100000F50 _main proc near -+

I

~ text:0000000100000F50 RBP 00007FFEEFBFFCDO0 4 debug017:

— text:0000000100000F50 var 8= dword ptr -8 RSP 00007FFEEFBFFCC8 W debug017:

__text:0000000100000F50 var_ 4= dword ptr -4 RIP 0000000100000F50 &, _main
O S S [© 0000000000000000

__text:0000000100000F51 mov rbp, rsp R9 0000000000000000

— text:0000000100000F54 sub rsp, 10h R10 0000000000000000 &

__text:0000000100000F58 mov [rbpt+var_4], 0 R11 0000000000000000 &

text:0000000100000F5F lea rdi, aHelloWorld ; "hello, world!\n"

N ol ol

text:0000000100000F66 mov al, 0 R12 0000000000000000 &
text:0000000100000F68 call printf R13 0000000000000000 «

Using a Launch Agent

To simplify using the mac server, save the following XML as com.hexrays.mac_server64.plist in
~/Library/LaunchAgents/:

<?xml version="1.0" encoding="UTF-8"7>
<!DOCTYPE plist>
<plist version="1.0">
<dict>
<key>Label</key>
<string>com.hexrays.mac_serveroé4</string>
<key>ProgramArguments</key>
<array>
<string>/Applications/IDA Pro 7.5/dbgsrv/mac_server64</string>
<string>-i</string>
<string>localhost</string>
</array>
<key>StandardOutPath</key>
<string>/tmp/mac_servero64.log</string>
<key>StandardErrorPath</key>
<string>/tmp/mac_servero4.log</string>
<key>KeepAlive</key>
<true/>
</dict>
</plist>

Now mac_server64 will be launched in the background whenever you log in. You can connect to it from IDA
at any time using the Remote Mac OS X Debugger option. Hopefully this will make local debugging on
OSX almost as easy as other platforms.

Debugging System Applications

There are some applications that OSX will refuse to allow IDA to debug.

For example, load /System/Applications/Calculator.app/Contents/MacOS/Calculator in IDA and try
launching the debugger. You will likely get this error message:

Permission denied. Please ensure that 'mac_server64' is either codesigned or running as root.

For more info, please see the 'Mac OS X debugger' help entry (shortcut F1).

Despite the fact that mac_server64 is codesigned, it still failed to retrieve permission from the OS to debug
the target app. This is because Calculator.app and all other apps in /System/Applications/ are protected by

System Integrity Protection and they cannot be debugged until SIP is disabled. Note that the error message
is a bit misleading because it implies that running mac_server64 as root will resolve the issue - it will not.
Not even root can debug apps protected by SIP.

Disabling SIP allows IDA to debug applications like Calculator without issue:

IDA View-RIP 0O ©® © i3 General registers

+text:0000000100009F81 RAX 000000010023A9B0 & debugl781:000000010023A9B0

L 2 P RBX 00007FFEEFBFE528 u, debug018:00007FFEEFBFES28

I

I

~text:0000000100009F82 RCX 000000000000FFFE w;
__text:0000000100009F82 ; Attributes: bp-based frame RDX 000000010044A520 & debugl783:000000010044A520
__text:0000000100009F82 RSI 00007FFF7D953AB9 4 debugl169:00007FFF7D953AB9

text:0000000100009F82 ; void cdecl -[CalculatorController applicationDidFinishLaunching: .
text:0000000100009F82 CalcuﬁtoxConn[:'oller applicationDidFiggshLaunching proc near L RDI 000000010023A9B0] Ly debugl781:000000010023A9B0
text:0000000100009F82 ~ - ; DATA XREF: _ objc_const:000(| RBP 00007FFEEFBFE4FO0 & debug018:00007FFEEFBFE4F0
text:0000000100009F82 RSP 00007FFEEFBFE4E8 4 debug018:00007FFEEFBFE4ES
text:0000000100009F82 block= byte ptr -50h RIP 0000000100009F82 u, -[CalculatorController applicationDid
RIP text:0000000100009F82

text:0000000100009F82 push rbp

|

R8 0000000000002061 w;

—text:0000000100009F83 mov rbp, rsp R9 0000000000000002 w,

__text:0000000100009F86 push rl5 R10 0000000100000000 & HEADER: _mh_execute_header
_tex?gggggggigggg;ggg P‘JB: r}g R11 0000000100009F82 w -[CalculatorController applicationDid]
__text: pus; r .
~text:0000000100009F8C push 12 R12 000000010023A9B0 & debugl781:000000010023A9B0
—_text:0000000100009F8E push rbx R13 000000010044A520 & debugl783:000000010044A520
__text:0000000100009F8F sub rsp, 28h R14 000000010033F160 & debugl1782:000000010033F160
__text:0000000100009F93 mov rbx, rdi R15 0000000000000000 .

__text:0000000100009F96 mov rl4, cs:selRef_ window EFL 00000206 :

__text:0000000100009F9D mov rl3, cs:_objc_msgSend ptr

__text:0000000100009FA4 mov rsi, rl4 ; SEL

__text:0000000100009FA7 call rl3 ; _objc_msgSend

__text:0000000100009FAA mov rl5, rax {58 Modules

__text:0000000100009FAD mov rdi, cs:classRef NSMutableDictionary ; Class

Path
{58 /System/Applications/Calculator.app/Contents/MacOS/Calculator
&8 Jusr/lib/dyld

00009F82 0000000100009F82: -[CalculatorController applicationD (Synchronized with RIP)

[3] Threads O ® @ &7 usrflibjlibobic-trampolines.dylib

Decimal Hex State Name @ /System/Library/Frameworks/Accelerate.framework/Versions/A/Acd
[@ 12547 3103 Ready Calculator {38 /System/Library/Frameworks/Accelerate.framework/Versions/A/Fra
E 20747 510B Ready FFFFFFFFFFFFFFFF @ /System/Library/Frameworks/Accelerate.framework/Versions/A/Fra

The effects of SIP are also apparent when attaching to an existing process. Try using menu
Debugger>Attach to process, with SIP enabled there will likely only be a handful of apps that IDA can
debug:

https://support.apple.com/en-us/HT204899
https://apple.stackexchange.com/questions/208478/how-do-i-disable-system-integrity-protection-sip-aka-rootless-on-macos-os-x

Choose process to attach to

ID Name
2371 [64] Wireshark
1136 [64] Vim
1135 [64] MacVim
888 [64] ida64
Line10of 4
Help Search Cancel m

Disabling SIP makes all system apps available for attach:

Choose process to attach to

ID Name
1269 [64] cloudphotod
1268 [64] mdworker
1248 [64] ScopedBookmarkAg
1244 [64] photolibraryd
1237 [64] followupd
1235 [64] photoanalysisd
1136 [64] keyboardservices
1135 [64] AppleSpell
1134 [64] idab64
1133 [64] Spotlight
1127 [64] appstoreagent
876 [64] mdworker shared
750 [64] com.apple.hiserv
749 [64] Calculator
623 [64] SafariBookmarksS
620 [64] mdworker shared
585 [64] spindump agent
Line 14 of 131

Help Search Cancel m

It is unfortunate that such drastic measures are required to inspect system processes running on your own
machine, but this is the reality of MacOS. We advise that you only disable System Integrity Protection when
absolutely necessary, or use a virtual machine that can be compromised with impunity.

Debugging System Libraries

With IDA you can debug any system library in /usr/lib/ or any framework in /System/Library/.

This functionality is fully supported, but surprisingly it is one of the hardest problems the mac debugger
must handle. To demonstrate this, let's try debugging the _getaddrinfo function in libsystem_info.dylib.

Consider the getaddrinfo application from samples.zip:

#include <sys/types.h>
#include <sys/socket.h>
#include <netdb.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <string.h>
#include <stdio.h>

int main(int argc, char **argv)
{
if Cargc '= 2)
{
fprintf(stderr, "usage: %s <hostname>\n", argv[0]);
return 1;

}

struct addrinfo hints;
memset(&hints, 0, sizeof(Chints));

hints.ai_family = AF_INET;
hints.ai_flags |= AI_CANONNAME;

struct addrinfo *result;
int code = getaddrinfo(Cargv[1l], NULL, &hints, &result);
if (code '= 0)
{
fprintf(stderr, "failed: %d\n", code);
return 2;

¥
struct sockaddr_in *addr_in = (struct sockaddr_in *)result->ai_addr;
char *ipstr = inet_ntoaCaddr_in->sin_addr);

printf("IP address: %s\n", ipstr);

return 0;

https://www.hex-rays.com/wp-content/uploads/2020/05/samples.zip

Try testing it out with a few hostnames:

$./getaddrinfo localhost
IP address: 127.0.0.1
$./getaddrinfo hex-rays.com

IP address: 104.26.10.224
$./getaddrinfo foobar
failed: 8

Now load libsystem_info.dylib in IDA and set a breakpoint at _getaddrinfo:

$ idao4 -o/tmp/libsystem_info /usr/lib/system/libsystem_info.dylib

text:0000000000008F30

:0000000000008F30 ; =============== S U B R O U T I N E =s====s========= ==
text:0000000000008F30

text:0000000000008F30 ; Attributes: bp-based frame

text:0000000000008F30

text:0000000000008F30 ; int _ cdecl getaddrinfo(const char *, const char *, const addrinfo *, addrinfo **)

(23
[0}
%
(a4

text:0000000000008F30 public _getaddrinfo
text:0000000000008F30 _getaddrinfo proc near ; CODE XREF: _rcmd_af+154lp
text:0000000000008F30 ; _ruserok+571p ...

text:0000000000008F30

text:0000000000008F30 var_ 28
text:0000000000008F30 var 20
text:0000000000008F30 var 18
text:0000000000008F30 var_ 10
text:0000000000008F30 var_8
text:0000000000008F30

gword ptr -28h
gword ptr -20h
qgword ptr -18h
gword ptr -10h
gword ptr -8

| text:0000000000008F31 mov rbp, rsp
| _text:0000000000008F34 sub rsp, 30h
| _text:0000000000008F38 xor eax, eax
| _text:0000000000008F3A mov r8d, eax

Choose Remote Mac OS X Debugger from the Debugger menu and under Debugger>Process options
be sure to provide a hostname in the Parameters field. IDA will pass this argument to the executable when
launching it:

Application [Users/troy/getaddrinfo
Input file Jusr/lib/system/libsystem_info.dylib
Directory /Users/troy
Parameters hex-rays.com
Hostname localhost Port 23946

Before launching the process, use Ctrl+S to pull up the segment list for libsystem_info.dylib. Pay special
attention to the __eh_frame and __nl_symbol_ptr segments. Note that they appear to be next to each
other in memory:

Name Start End R W X
EE HEADER 0000000000000000 00000000000011DO0O R X
__text 00000000000011DO 000000000004980A R X
@ __stubs 000000000004980A 0000000000049CF0 R X
@ __stub_helper 0000000000049CFO0 000000000004A52A R X
@ __const 000000000004A530 000000000004A6FC R X
@ __cstring 000000000004A6FC 000000000004cCA70 R X
__oslogstring 000000000004cCA70 000000000004DEO0G R X
@ __unwind info 000000000004DE0O8 000000000004DFAQ R X
_eh_fraITle 000000000004DFAO 000000000004DFF8 R X
~_nl symbol ptr 000000000004E000 000000000004E008 R W .
@ __got 000000000004E008 000000000004E090 R W .
@ __la symbol ptr 000000000004E090 000000000004E718 R W .
@ __const 000000000004E720 000000000004F3B0O R W .
@ __data 000000000004F3B0O 000000000004FB6C R W .
___common 000000000004FB70 000000000004FF80 R W .
@ __bss 000000000004FF80 0000000000050578 R W .

This will be important later.

Finally, use F9 to launch the debugger and wait for our breakpoint at _getaddrinfo to be hit. We can now
start stepping through the logic:

IDA View-RIP O © € i3 Generalregisters
__text:00007FFF6D211F30 _getaddrinfo proc near ; CODE XREF: RAX 0000000000000000 .
text:00007FFF6D211F30 ; _ruserok+5 i
“text:00007FFF6D211F30 f - RBX 0000000000000000 &,
__text:00007FFF6D211F30 var 28= gqword ptr -28h RCX 0000000000000000 &
__text:00007FFF6D211F30 var 20= gqword ptr -20h RDX 00007FFEEFBFFC60 & debug307:00007FFEEFBFFC60
_ text:00007FFF6D211F30 var 18= gqword ptr -18h RSI 0000000000000000 w.
__text:00007FFF6D211F30 var_10= qword ptr -10h o _ "
text:00007FFF6D211F30 var 8= qword ptr -8 RDI 00007FFEEFBFFDCO L "hex-rays.com
~ text:00007FFF6D211F30 - RBP 00007FFEEFBFFC10 4 debug307:00007FFEEFBFFC10
R11 RSP 00007FFEEFBFFBEO &, debug307:00007FFEEFBFFBEQ
_:eX?gggg;;gggggﬁggi mog rbp, ;gg RIP 00007FFF6D211F68 & _getaddrinfo+38
__text: su rsp j
—text:00007FFF6D211F38 xor GF & R8 00007FFEEFBFFC58 & debug307:00007FFEEFBFFC58
~ text:00007FFF6D211F3A mov r8d, eax R9 0000000000000000 &
__text:00007FFF6D211F3D mov [rbp+var 8], rdi R10 00007FFEEFBFFD90 & debug307:00007FFEEFBFFD90
:eX?gggg;ggggggﬂgzé mov {rgpwar}g}, rsi R11 00007FFF6D211F30 & _getaddrinfo
__text: mov rbptvar_ , rdx i
“text:00007FFF6D211F49 mov [rbp+var 20], rex R1210000000000000000RK;
—_text:00007FFF6D211F4D mov rdi, [rbp+var_ 8] R13 0000000000000000 «;
__text:00007FFF6D211F51 mov rsi, [rbp+var_10] R14 0000000000000000 ;.
__text:00007FFF6D211F55 mov rdx, [rbpt+var_18] R15 0000000000000000 .
__text:00007FFF6D211F59 mov rcx, [rbpt+var_20] EFL 00000346 i
__text:00007FFF6D211F5D mov [rbp+var 28], rcx
__text:00007FFF6D211F61 mov rex, r8
__text:00007FFF6D211F64 mov r8, [rbp+var 28]
“text:00007FFF6D211F68 call _ getaddrinfo_internal Modules
—_text:00007FFF6D211F6D add rsp, 30h

Path

00008D98 00007FFF6D211F68: _getaddrinfo+38 (Synchronized with RIP) /Users/troy/getaddrinfo

{58 /usr/lib/dyld

£3 Call Stack o0 0 /usr/1lib/1ibSystem.B.dylib
Address Module Function /usr/lib/libct++.1.dylib

£3 00007FFF6D211F68 libsystem info.dylib _getaddrinfo+0x38 8 /usr/1ib/libc++abi.dylib

£5 0000000100000E99 getaddrinfo _main+99 /usr/lib/libobjc.A.dylib

£5 00007FFF6D116CCY libdyld.dylib _start+l /usr/1lib/system/libcache.dylib

/usr/lib/system/libcommonCrypto.dylib

Everything appears to be working normally, but use Ctrl+S to pull up the segment information again. We
can still see __eh_frame, but it looks like __nl_symbol_ptr has gone missing:

El HEADER 00007FFF6D209000 00007FFF6D20A1D0 R X
__text 00007FFF6D20A1D0 00007FFF6D25280A R X
%] stubs 00007FFF6D25280A 00007FFF6D252CF0 R X
__stub_helper 00007FFF6D252CF0 00007FFF6D25352A R X
debug384 00007FFF6D25352A 00007FFF6D253530 R X
%] const 00007FFF6D253530 00007FFF6D2536FC R X
__cstring 00007FFF6D2536FC 00007FFF6D255A70 R X
EH __oslogstring 00007FFF6D255A70 O0O0007FFF6D256E06 R X
5] debug385 00007FFF6D256E06 00007FFF6D256E08 R X
__unwind info 00007FFF6D256E08 00007FFF6D256FA0 R X
%] eh frame 00007FFF6D256FA0 00007FFF6D256FF8 R X
debug386 00007FFF6D256FF8 00007FFF6D257000 R X
Eﬂ libsystem kernel.dylib:HEADER 00007FFF6D257000 O000Q07FFF6D257B00 R .
[%] 1ibsystem kernel.dylib: text 00007FFF6D257B00 00007FFF6D279A14 R X

It is actually still present, but we find it at a much higher address:

EE libsystem featureflags.dylib:.. 00007FFF93C39710 O00007FFF93C39729 R .

EE debug548 00007FFF93C39729 00007FFF93C39730 R W
BB nl symbol ptr 00007FFF93C39730 00007FFF93C39738 R W
EE __got 00007FFF93C39738 00007FFF93C397C0 R W
EE __la symbol ptr 00007FFF93C397C0 00007FFF93C39E48 R W
EE debug549 00007FFF93C39E48 00007FFF93C39E50 R W
EE __const 00007FFF93C39E50 00007FFF93C3AAEQ R W
EE __data 00007FFF93C3AAE0 00007FFF93C3B29C R W
EE debug550 00007FFF93C3B29C 00007FFF93C3B2A0 R W
EE __common 00007FFF93C3B2A0 00007FFF93C3B6B0 R W
EE __bss 00007FFF93C3B6B0 00007FFF93C3BCAS8 R W
EE debug551 00007FFF93C3BCA8 00007FFF93C3BCBO R W .
45| UNDEF 00007FFF93C3BCBO 00007FFF93C3C3CO0 2 0?02
EE libsystem kernel.dylib: const 00007FFF93C3C3C0 O00007FFF93C3EOBO R

Recall that we opened the file directly from the filesystem (/usr/lib/system/libsystem_info.dylib). However
this is actually not the file that OSX loaded into memory. The libsystem_info image in process memory was
mapped in from the dyld_shared cache, and the library's segment mappings were modified before it was
inserted into the cache.

IDA was able to detect his situation and adjust the database so that it matches the layout in process
memory. This functionality is fully supported, but it is not trivial. Essentially the debugger must split your
database in half, rebase all code segments to one address, then rebase all data segments to a completely
different address.

It is worth noting there is another approach that achieves the same result, but without so much complexity.

http://iphonedevwiki.net/index.php/Dyld_shared_cache

Debugging Modules in dyld_shared_cache

As an alternative for the above example, note that you can load any module directly from a
dyld_shared_cache file and debug it. For example, open the shared cache in IDA:

$ ida64 -o/tmp/libsystem_info2 /var/db/dyld/dyld_shared_cache_x86_64h

When prompted, select the "single module" option:

Load file /private/var/db/dyld/dyld_shared_cache_x86_64h as
Apple DYLD cache for x86_64h (complete image) [macho64.dylib]

Apple DYLD cache for x86_64h (single module) [macho64.dylib]

Apple DYLD cache for x86_64h (single module plus dependencies) [macho64.dylib]
Binary file

Then choose the libsystem_info module:

Choose a module to load

File name Address
/usr/lib/system/libsystem coreservices.dylib 0x7FFF671E3000
/usr/lib/system/libsystem darwin.dylib 0x7FFF671E7000
/usr/lib/system/libsystem dnssd.dylib 0x7FFF671F0000
/usr/lib/system/libsystem featureflags.dylib 0x7FFF671F8000
/usr/lib/system/libsystem kernel.dylib 0x7FFF67248000
/usr/lib/system/libsystem m.dylib 0x7FFF67275000
/usr/lib/system/libsystem malloc.dylib 0x7FFF672BD000
/usr/lib/system/libsystem networkextension.dylib 0x7FFF672E5000
/usr/lib/system/libsystem notify.dylib 0x7FFF672F3000
/usr/lib/system/libsystem platform.dylib 0x7FFF672FD000
/usr/lib/system/libsystem pthread.dylib 0x7FFF67306000
Line 1634 of 1810
Help Search Cancel ﬁ

Select the Remote Mac OS X Debugger and for Debugger>Process options use the exact same options

as before:
% Debug application setup: macosx
Application /Users/troy/getaddrinfo
Input file Jusr/lib/system/libsystem_info.dylib
Directory /Users/troy
Parameters hex-rays.com
Hostname localhost Port 23946

Now set a breakpoint at _getaddrinfo and launch the process with F9.

After launching the debugger you might see this warning:

The database has been patched.
There might be some inconsistency between the disassembly
in the database and the actual debugger process.

Don't display this message again (for this database only)

This is normal. Modules from the dyld_shared_cache will contain tagged pointers, and IDA patched the

pointers when loading the file so that analysis would not be hindered by the tags. IDA is warning us that the

patches might cause a discrepancy between the database and the process, but in this case we know it's ok.

Check Don't display this message again and don't worry about it.

Launching the process should work just like before, and we can start stepping through the function in the

shared cache:

IDA View-RIP

libsystem_info:
libsystem info:
libsystem_info:
libsystem_info:
libsystem_info:
libsystem_info:
libsystem info:
libsystem_info:
RI1 libsystem info:
libsystem_ info:
libsystem info:
libsystem info:
libsystem_info:
libsystem_info:
libsystem_ info:
libsystem info:
libsystem info:
libsystem_info:
libsystem_info:
libsystem_info:
libsystem_ info:
libsystem info:
libsystem_info:
libsystem_info:
libsystem info:

£5 Call Stack

Address

£5) 00007FFF6D211F68
£5/ 0000000100000E99
£5 00007FFF6D116CCY

[
|

I
|

[
|

I

|

|

text:00007FFF6D211F31 mov
text:00007FFF6D211F34
text:00007FFF6D211F38 xor
text:00007FFF6D211F3A mov
text:00007FFF6D211F3D mov
text:00007FFF6D211F41 mov
text:00007FFF6D211F45 mov
text:00007FFF6D211F49 mov
text:00007FFF6D211F4D mov
text:00007FFF6D211F51 mov
text:00007FFF6D211F55 mov
text:00007FFF6D211F59 mov
text:00007FFF6D211F5D mov
text:00007FFF6D211F61 mov
text:00007FFF6D211F64 mov
text:00007FFF6D211F68 call
libsystem info:__text:00007FFF6D211F6D add

00008F68 00007FFF6D211F68: _getaddrinfo+38 (Synchronized with RIP)

Module

libsystem info.dylib
getaddrinfo
libdyld.dylib

text:00007FFF6D211F30 _getaddrinfo proc near
text:00007FFF6D211F30
text:00007FFF6D211F30
text:00007FFF6D211F30 var 28= gword ptr -28h
text:00007FFF6D211F30 var 20= gword ptr -20h
text:00007FFF6D211F30 var 18= gword ptr -18h
text:00007FFF6D211F30 var 10= gword ptr -10h
text:00007FFF6D211F30 var 8= qword ptr -8

text:00007FFF6D211F30

rbp,
rsp, 30h

eax, eax

r8d, eax
[rbptvar 8], rdi
[rbptvar 10], rsi
[rbpt+var 18], rdx
[rbpt+var_20], rcx
rdi, [rbp+var_ 8]

rsp

rsi, [rbp+var_ 10]
rdx, [rbp+var 18]
rex, [rbpt+var 20]

[rbpt+var_ 28], rcx
rex, r8
r8, [rbpt+var 28]

o e 0t General registers

__getaddrinfo_internal

rsp, 30h

Function
_getaddrinfo+0x38
_main+99

_start+l

m

(5]

(x)

RAX 0000000000000000 =«
RBX 0000000000000000 =«
RCX 0000000000000000 =«

RDX 00007FFEEFBFFC60

RSI 0000000000000000 «

RDI 00007FFEEFBFFDCO
RBP 00007FFEEFBFFC10
RSP 00007FFEEFBFFBEOQ
RIP 00007FFF6D211F68
R8 00007FFEEFBFFC58

R9 0000000000000000 &

R10 00007FFEEFBFFD90
R11 00007FFF6D211F30
R12 0000000000000000

R13 0000000000000000 «
R14 0000000000000000 =«

4 debug309:00007FFEEFBFFC60
Q."hex—rays.com"

4 debug309:00007FFEEFBFFC10
4 debug309:00007FFEEFBFFBEQ
W _getaddrinfo+38

4 debug309:00007FFEEFBFFC58
4 debug309:00007FFEEFBFFD90
W _getaddrinfo

“

R15 0000000000000000 «.

EFL 00000346

8 Modules

Path

{48 /Users/troy/getaddrinfo

{6 /usr/lib/dyld

{5 /usr/lib/libSystem.B.dylib

{58 /usr/lib/libe++.1.dylib

6 /usr/lib/libc++abi.dylib

{5 /usr/lib/libobjc.A.dylib

{8 /usr/lib/system/libcache.dylib

gE /usr/lib/system/libcommonCrypto.dylib

This time there was no special logic to map the database into process memory. Since we loaded the
module directly from the cache, segment mappings already match what's expected in the process. Thus
only one rebasing operation was required (as apposed to the segment scattering discussed in the previous

example).

Both techniques are perfectly viable and IDA goes out of its way to fully support both of them. In the end

having multiple solutions to a complex problem is a good thing.

Debugging Objective-C Applications

When debugging OSX applications it is easy to get lost in some obscure Objective-C framework. IDA's mac
debugger provides tools to make debugging Objective-C code a bit less painful.

Consider the bluetooth application from samples.zip:

#import <IOBluetooth/IOBluetooth.h>

int main(void)

{
NSArray *devices = [IOBluetoothDevice pairedDevices];
int count = [devices count];
for (int 1 = 0; 1 < count; i++)

{

IOBluetoothDevice *device = [devices objectAtIndex:i];
NSLog(@"%@:\n", [device name]);
NSLog(@" paired: %d\n", [device isPaired]);
NSLog(@" connected: %d\n", [device isConnected]);

ks

return 0;

The app will print all devices that have been paired with your host via Bluetooth. Try running it:

$./bluetooth

2020-05-22
2020-05-22
2020-05-22
2020-05-22

2020-05-22
2020-05-22
2020-05-22

16:
16:
16:
16:
16:
16:
16:

bluetooth[17025:
bluetooth[17025:
bluetooth[17025:
bluetooth[17025:
bluetooth[17025:
bluetooth[17025:
bluetooth[17025:

15645888] Magic Keyboard:
15645888] paired: 1
15645888] connected: 1
15645888] Apple Magic Mouse:
15645888] paired: 1
15645888]] connected: 1
156458881 iPhone SE:

2020-05-22 16:
2020-05-22 16:

bluetooth[17025:15645888] paired: 0
bluetooth[17025:15645888] connected: 0

Let's try debugging this app. First consider the call to method +[IOBluetoothDevice pairedDevices]:

text:0000000100000E30 push rbp

text:0000000100000E31 mov rbp, rsp

text:0000000100000E34 sub rsp, 20h

text:0000000100000E38 mov [rbpt+var 4], 0

text:0000000100000E3F mov rax, cs:classRef IOBluetoothDevice
text:0000000100000E46 mov rsi, cs:selRef pairedDevices ; SEL
text:0000000100000E4D mov rdi, rax ; id
text:0000000100000E50 call cs:_objc_msgSend ptr
text:0000000100000E56 mov [rbp+var 10], rax

Bl
|

https://www.hex-rays.com/wp-content/uploads/2020/05/samples.zip

If we execute a regular instruction step with F7, IDA will step into the _objc_msgSend function in
libobjc.A.dylib, which is probably not what we want here. Instead use shortcut Shift+0. IDA will
automatically detect the address of the Objective-C method that is being invoked and break at it:

IOBluetooth: text:00007FFF358F7D60 ;
IOBluetooth: text:00007FFF358F7D60
IOBluetooth: text:00007FFF358F7D60 ; +[IOBluetoothDevice pairedDevices]

E IOBluetooth: text:00007FFF358F7D60 __ IOBluetoothDevice_ pairedDevices_:
5 IOBluetooth:_ text:00007FFF358F7D60 push rbp
IOBluetooth: text:00007FFF358F7D61 mov rbp, rsp
IOBluetooth: text:00007FFF358F7D64 sub rsp, 150h
IOBluetooth: text:00007FFF358F7D6B mov rax, cs:off 7FFF8AF8EF68
IOBluetooth: text:00007FFF358F7D72 mov rax, [rax]
IOBluetooth: text:00007FFF358F7D75 mov [rbp-8], rax

This module appears to be Objective-C heavy, so it might be a good idea to extract Objective-C type info
from the module using right click -> Load debug symbols in the Modules window:

(58 Modules

Path

EE /System/Library/Frameworks/Foundation. framework/Versions/C/Foundation

EE /System/Library/Frameworks/GSS.framework/Versions/A/GSS

EE /System/Library/Frameworks/IOK Copy $C

EE /System/Library/Frameworks/IOS Copy all A{| ISurface

EE /System/Library/Frameworks/Ima feIo

f4fl /System/Library/Frameworks/Ima N Quick filter ~F lurces/1ibGIF.
f4f /System/Library/Frameworks/Ima Nil Modify filters... NOF Jurces/1ibJpP2.
EE /System/Library/Frameworks/Ima urces/1ibJPEG
@ /System/Library/Frameworks/Ima Load debug symbols urces/libPng.
@ /System/Library/Frameworks/Ima| Jump to module base urces/libRadi
EE]/System/Library/Frameworks/Ima Analyze module urces/1libTIFF
ﬁ?ﬁ] /System/Library/Frameworks/Ker Break on access beros

This operation will extract any Objective-C types encoded in the module, which should give us some nice
prototypes for the methods we're stepping in:

IOBluetooth: text:00007FFF358F7D60

IOBluetooth: text:00007FFF358F7D60 ; =============== S UB R O U T I N E ===
IOBluetooth: text:00007FFF358F7D60

IOBluetooth: text:00007FFF358F7D60 ; Attributes: bp-based frame

IOBluetooth: text:00007FFF358F7D60

IOBluetooth: text:00007FFF358F7D60 ; NSArray *_cdecl +[IOBluetoothDevice pairedDevices](id, SEL)

IOBluetooth: text:00007FFF358F7D60 _ IOBluetoothDevice pairedDevices_ proc near

IOBluetooth: text:00007FFF358F7D60 ; DATA XREF: IOBluetooth:_ objc_const:
IOBluetooth: text:00007FFF358F7D60

Let's continue to another method call - but this time the code invokes a stub for _objc_msgSend that IDA
has not analyzed yet, so its name has not been properly resolved:

IOBluetooth: text:00007FFF358F7D91 mov [rbp+var A0], rax
IOBluetooth: text:00007FFF358F7D98 mov rax, cs:classRef IOBluetoothPreferences
IOBluetooth: text:00007FFF358F7D9F mov rsi, cs:selRef_sharedPreferences

RIP) IOBluetooth: text:00007FFF358F7DA6 mov rdi, rax
[fOBluetooth:_text:00007FFF358F7DA9 call cs:off_ 7FFF8AF8F058
IOBluetooth: text:00007FFF358F7DAF mov rsi, cs:selRef_ pairedDevices_0
IOBluetooth: text:00007FFF358F7DB6 mov rdi, rax

In this case Shift+0 should still work:

IOBluetooth:_text:00007FFF358EDDEO

IOBluetooth: text:00007FFF358EDDE(Q ; =============== § U B R O U T I N E ====
IOBluetooth:_text:00007FFF358EDDEO

IOBluetooth: text:00007FFF358EDDEQO ; Attributes: bp-based frame

IOBluetooth:__text:00007FFF358EDDEO

IOBluetooth:_ text:00007FFF358EDDEO ; id _ cdecl +[IOBluetoothPreferences sharedPreferences](id, SEL)
IOBluetooth:_ text:00007FFF358EDDE0 _ IOBluetoothPreferences_sharedPreferences_ proc near
IOBluetooth:_text:00007FFF358EDDEO ; DATA XREF: IOBluetooth:_objc_const:
IOBluetooth: text:00007FFF358EDDEO

IOBluetooth:_text:00007FFF358EDDE0 var 28= gword ptr -28h

IOBluetooth:_text:00007FFF358EDDEO0 var 20= gword ptr -20h

IOBluetooth:_text:00007FFF358EDDE(0 var_ 18= gword ptr -18h

IOBluetooth:_text:00007FFF358EDDE0 var_ 10= gword ptr -10h

IOBluetooth:_text:00007FFF358EDDE0 var 8= gword ptr -8

ﬁ IOBluetooth: text:00007FFF358EDDEO

|

IOBluetooth:_text:00007FFF358EDDEO push rbp
IOBluetooth: text:00007FFF358EDDEl mov rbp, rsp

Shift+0 is purposefully flexible so that it can be invoked at any point before a direct or indirect call to
_objc_msgSend. It will simply intercept execution at the function in libobjc.A.dylib and use the arguments
to calculate the target method address.

However, you must be careful. If you use this action in a process that does not call _objc_msgSend, you
will lose control of the process. It is best to only use it when you're certain the code is compiled from
Objective-C and an _objc_msgSend call is imminent.

Decompiling Objective-C at Runtime

The Objective-C runtime analysis performed by Load debug symbols will also improve decompilation.

Consider the method -[IOBluetoothDevice isConnected]:

IOBluetooth:_text:00007FFF35901BB0

IOBluetooth: text:00007FFF35901BB0 ; =============== § U B R O U T I N E ====
IOBluetooth:_text:00007FFF35901BB0

IOBluetooth: text:00007FFF35901BB0 ; Attributes: bp-based frame
IOBluetooth:_text:00007FFF35901BB0

IOBluetooth:_text:00007FFF35901BB0 ; BOOL _ cdecl -[IOBluetoothDevice isConnected](IOBluetoothDevice *self, SEL)
IOBluetooth:_text:00007FFF35901BB0 __ IOBluetoothDevice_ isConnected_proc near
IOBluetooth:_text:00007FFF35901BB0 ; DATA XREF: IOBluetooth:_objc_const:
IOBluetooth:_text:00007FFF35901BB0

IOBluetooth: _text:00007FFF35901BB0 var_ 52= byte ptr -52h

IOBluetooth:_ text:00007FFF35901BB0 var 51= byte ptr -51h

IOBluetooth:_ text:00007FFF35901BB0 var 50= gword ptr -50h
IOBluetooth:_text:00007FFF35901BB0 var 48= gword ptr -48h

IOBluetooth: text:00007FFF35901BB0 var 39= byte ptr -39h
IOBluetooth:_text:00007FFF35901BB0 var_ 38= gword ptr -38h

IOBluetooth:_ text:00007FFF35901BB0 var 2C= dword ptr -2Ch
IOBluetooth:_text:00007FFF35901BB0 var 28= gword ptr -28h

IOBluetooth: text:00007FFF35901BB0 var 20= gword ptr -20h

IOBluetooth: text:00007FFF35901BB0 var 18= gword ptr -18h

IOBluetooth:_ text:00007FFF35901BB0 var 10= byte ptr -10h
IOBluetooth:_text:00007FFF35901BB0 var 8= gword ptr -8

ﬁ IOBluetooth: text:00007FFF35901BB0

|

|

IOBluetooth: text:00007FFF35901BB0 push rbp
IOBluetooth: text:00007FFF35901BB1l mov rbp, rsp

Before we start stepping through this method we might want to peek at the pseudocode to get a sense of
how it works. Note that the Objective-C analysis created local types for the IOBluetoothDevice class, as
well as many other classes:

%] IDA View-RIP o= Local Types
Ordinal Name Size Sync Description
EE 43 IOBluetoothDeviceExpansion 00000088 struct {NSObject super;IOBlu
[T 44 SDPQueryCallbackDispatcher 00000018 struct {NSObject super;id mT
[B] 45 I0BluetoothObject % Please edit the type declaration
=] 46 I0BluetoothDevice d
EE 47 TOBluetoothHCIUnified iy Offset|Size||struct IOBluetoothDevice
[Z] 48 BTClient {

. 0000(0018 IOBluetoothObject super;
49 BluetoothDeviceManager 0018/0008| id mServerDevice; ’
EE 50 IOBluetoothL2CAPChannelExy 0020/0004| unsigned int mDeviceConnectNotification;

0024|0006 BluetoothDeviceAddress mAddress;
E 51 IOBluetoothL2CAPChannelDe] 0030/0008 NSString *mName;
: 2 IOB1l hL2CAPCh 0l 0038|0008 NSDate *mLastNameUpdate;
'E > OBluetoot CAPChanmg 0040(0004 unsigned int mClassOfDe"rice;
[F] 53 $431E0FFFF5EECFE295EE5EFAS 0044/0001| unsigned __int8 mPageScanRepetitionMode;
= 0045/0001| unsigned __int8 mPageScanPeriodMode;
EE 54 I0BluetoothUserMessageBlog 0046|0001 unsigned __int8 mPageScanMode; !
Eﬂ 55 $600350704F50506D3FAE1439¢§ 0048/0002| unsigned __intl16 mClockOffset;
0050/0008 NSDate *mLastInquiryUpdate;
(2] 56 IOBluetoothRFCOMMChannel 0058/0002| unsigned __int16 mConnecti;nBandle;
3] 57 I0BluetoothRFCOMMConnectig 005210001 unsigned _ int8 mLinkType;
. 0058(0001| unsigned __int8 mEncryptionMode;

[Z] 58 IOBluetoothSDPServiceRecos 0060|0008 NSArray *mServiceArray;
- ; 0068|0008 NSDate *mLastServicesUpdate;
EE 59 I0BluetoothSerialPort 0070|0008 IOBluetoothRFCOMMConnection,*mRFCOMMCOnnection;
EE 60 IOBluetoothSerialPortManag 0078|0008 id _mReserved;
EE 61 NotificationInfo 0080/ };
[Z] 62 IOBluetoothNotification

This type info results in some sensible pseudocode:

Pseudocode-A

BOOL _ cdecl -[IOBluetoothDevice isConnected](IOBluetoothDevice *self, SEL a2)

// [COLLAPSED LOCAL DECLARATIONS. PRESS KEYPAD CTRL-"+" TO EXPAND]

if (self->super.mIOService)

{
state = OxAAAAAAAAAAAAAAAALL;

v3 = j__ IOServiceGetState(self->super.mIOService, &state);

if (v3 || (state & 1) 1= 10)
{
EEP // logging
objc_msgSend(self, "setIOService:", OLL);
}
oo // __stack _chk_guard

return self->super.mIOService != 0;

We knew nothing about this method going in - but it's immediately clear that device connectivity is
determined by the state of an io_service_t handle in the IOBluetoothObject superclass, and we're well on

our way.

Debugging Over SSH

In this section we will discuss how to remotely debug an app on a mac machine using only an SSH
connection. Naturally, this task introduces some unique complications.

To start, copy the mac_server binaries and the bluetooth app from samples.zip to the target machine:

$ scp <IDA install dir>/dbgsrv/mac_server* user@remote:

$ scp bluetooth user@remote:

Now ssh to the target machine and launch the mac_server:

$ ssh user@remote
user@remote:~$./mac_servero4

IDA Mac 0S X 64-bit remote debug server(MT) v7.5.26. Hex-Rays (c) 2004-2020
Listening on 0.0.0.0:23946. ..

Now open the bluetooth binary on the machine with your IDA installation, select Remote Mac OS X
Debugger from the debugger menu, and for Debugger>Process options set the debugging parameters.
Be sure to replace <remote user> and <remote ip> with the username and ip address of the target

machine:

@ ® 3 Debugapplication setup: macosx
Application /Users/<remote user>/bluetooth a
Input file /Users/<remote user>/bluetooth a
Directory /Users/<remote user> a
Parameters a
Hostname <remote ip> Port 23946 a

Try launching the debugger with F9. You might get the following error message:

Permission denied. Please ensure that 'mac_server64' is either codesigned or running as root.

For more info, please see the 'Mac OS X debugger' help entry (shortcut F1).

https://www.hex-rays.com/wp-content/uploads/2020/05/samples.zip

This happened because debugging requires manual authentication from the user for every login session
(via the Take Control prompt discussed under Using the Mac Debug Server, above). But since we're
logged into the mac via SSH, the OS has no way of prompting you with the authentication window and thus
debugging permissions are refused.

Note that mac_server64 might have printed this workaround:

WARNING: The debugger could not acquire the necessary permissions from the 0S to
debug mac applications. You will likely have to specify the proper credentials at

process start. To avoid this, you can set the MAC_DEBMOD_USER and MAC_DEBMOD_PASS
environment variables.

But this is an extreme measure. As an absolute last resort you can launch the mac_server with your
credentials in the environment variables, which should take care of authentication without requiring any
interaction with the OS. However there is a more secure workaround.

In your SSH session, terminate the mac_server process and run the following command:

$ security authorizationdb read system.privilege.taskport > taskport.plist

Edit taskport.plist and change the authenticate-user option to false:

<key>authenticate-user</key>
<false/>

Then apply the changes:

$ sudo security authorizationdb write system.privilege.taskport < taskport.plist

This will completely disable the debugging authentication prompt (even across reboots), which should allow
you to use the debug server over SSH without OSX bothering you about permissions.

Dealing With Slow Connections

When debugging over SSH you might experience some slowdowns. For example you might see this dialog
appear for several seconds when starting the debugger:

Please wait...

Downloading Symbols

Cancel

During this operation IDA is fetching function names from the symbol tables for all dylibs that have been
loaded in the target process. It is a critical task (after all we want our stack traces to look nice), but it is
made complicated by the sheer volume of dylibs loaded in a typical OSX process due to the
dyld_shared_cache. This results in several megabytes of raw symbol names that mac_server must transmit
over the wire every time the debugger is launched.

We can fix this by using the same trick that IDA's Remote iOS Debugger uses to speed up debugging - by

extracting symbol files from the dyld cache and parsing them locally. Start by downloading the ios_deploy
utility from our downloads page, and copy it to the remote mac:

$ scp ios_deploy user@remote:

Then SSH to the remote mac and run it:

$./ios_deploy symbols -c /var/db/dyld/dyld_shared_cache_x86_64h -d mac_symbols
Extracting symbols from /var/db/dyld/dyld_shared_cache_x86_64h => mac_symbols
Extracting symbol file: 1813/1813

mac_symbols: done

$ zip -r mac_symbols.zip mac_symbols

Copy mac_symbols.zip from the remote machine to your host machine and unzip it. Then open
Debugger>Debugger options>Set specific options and set the Symbol path field:

@ O ISRy Nac'0SX Debligger Options T —

Symbol path | /Users/troy/mac_symbols E

Cancel (NSO

Now try launching the debugger again, it should start up much faster.
Also keep the following in mind:

e Use /var/db/dyld/dyld_shared_cache_i386 if debugging 32-bit apps

e You must perform this operation after every OSX update. Updating the OS will likely update the
dyld_shared_cache, which invalidates the extracted symbol files.

e The ios_deploy utility simply invokes dyld_shared_cache_extract_dylibs_progress from the
dsc_extractor.bundle library in Xcode. If you don't want to use ios_deploy there are likely other third-
party tools that do something similar.

https://www.hex-rays.com/wp-content/uploads/2020/06/ios_debugger_primer2.pdf
https://www.hex-rays.com/products/ida/support/ida/ios_deploy.zip

Support

If you have any questions about this writeup or encounter any issues with the debugger itself in your
environment, don't hesitate to contact us at support@hex-rays.com.

Our Mac support team has years of experience keeping the debugger functional through rapid changes in
the Apple developer ecosystem. It is likely that we can resolve your issue quickly.

